# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from ...extras.misc import calculate_tps from ...extras.ploting import plot_loss from ...model import load_model, load_tokenizer from ..trainer_utils import create_modelcard_and_push from .metric import ComputeAccuracy, ComputeSimilarity, eval_logit_processor from .trainer import CustomSeq2SeqTrainer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments logger = get_logger(__name__) def run_sft( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", generating_args: "GeneratingArguments", callbacks: Optional[list["TrainerCallback"]] = None, ): tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template = get_template_and_fix_tokenizer(tokenizer, data_args) dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) if getattr(model, "is_quantized", False) and not training_args.do_train: setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction data_collator = SFTDataCollatorWith4DAttentionMask( template=template, model=model if not training_args.predict_with_generate else None, pad_to_multiple_of=8 if training_args.do_train else None, # for shift short attention label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, block_diag_attn=model_args.block_diag_attn, attn_implementation=getattr(model.config, "_attn_implementation", None), compute_dtype=model_args.compute_dtype, **tokenizer_module, ) # Metric utils metric_module = {} if training_args.predict_with_generate: metric_module["compute_metrics"] = ComputeSimilarity(tokenizer=tokenizer) elif finetuning_args.compute_accuracy: metric_module["compute_metrics"] = ComputeAccuracy() metric_module["preprocess_logits_for_metrics"] = eval_logit_processor # Keyword arguments for `model.generate` gen_kwargs = generating_args.to_dict(obey_generation_config=True) gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids gen_kwargs["pad_token_id"] = tokenizer.pad_token_id # Initialize our Trainer trainer = CustomSeq2SeqTrainer( model=model, args=training_args, finetuning_args=finetuning_args, data_collator=data_collator, callbacks=callbacks, gen_kwargs=gen_kwargs, **dataset_module, **tokenizer_module, **metric_module, ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() if finetuning_args.include_effective_tokens_per_second: train_result.metrics["effective_tokens_per_sec"] = calculate_tps( dataset_module["train_dataset"], train_result.metrics, stage="sft" ) trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: keys = ["loss"] if isinstance(dataset_module.get("eval_dataset"), dict): keys += sum( [[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], [] ) else: keys += ["eval_loss", "eval_accuracy"] plot_loss(training_args.output_dir, keys=keys) if training_args.predict_with_generate: tokenizer.padding_side = "left" # use left-padding in generation # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: logger.warning_rank0_once("Batch generation can be very slow. Consider using `scripts/vllm_infer.py` instead.") predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict", **gen_kwargs) trainer.log_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics) trainer.save_predictions(dataset_module["eval_dataset"], predict_results, generating_args.skip_special_tokens) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)