ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/kto_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Union
import torch
from transformers import Trainer
from trl import KTOTrainer
from trl.trainer import disable_dropout_in_model
from typing_extensions import override
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
if TYPE_CHECKING:
import torch.utils.data
from transformers import PreTrainedModel, ProcessorMixin
from ...hparams import FinetuningArguments
class CustomKTOTrainer(KTOTrainer):
def __init__(
self,
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
finetuning_args: "FinetuningArguments",
processor: Optional["ProcessorMixin"],
disable_dropout: bool = True,
**kwargs,
):
if is_transformers_version_greater_than("4.46"):
kwargs["processing_class"] = kwargs.pop("tokenizer")
if disable_dropout:
disable_dropout_in_model(model)
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.finetuning_args = finetuning_args
self.reference_free = False
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.is_encoder_decoder = model.config.is_encoder_decoder
self.precompute_ref_log_probs = False
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
self._peft_has_been_casted_to_bf16 = False
self.ref_model = ref_model
self._stored_metrics = defaultdict(lambda: defaultdict(list))
# kto hyperparams
self.beta = finetuning_args.pref_beta
self.desirable_weight = finetuning_args.kto_chosen_weight
self.undesirable_weight = finetuning_args.kto_rejected_weight
self.ftx_gamma = finetuning_args.pref_ftx
Trainer.__init__(self, model=model, **kwargs)
self.model_accepts_loss_kwargs = False # overwrite trainer's default behavior
if not hasattr(self, "accelerator"):
raise AttributeError("Please update `transformers`.")
warnings.simplefilter("ignore") # remove gc warnings on ref model
if ref_model is not None:
if self.is_deepspeed_enabled:
if not (
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
): # quantized models are already set on the correct device
self.ref_model = self._prepare_deepspeed(self.ref_model)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
self.ref_model.eval()
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.add_callback(BAdamCallback)
@override
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
@override
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
@override
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
r"""Replace the sequential sampler of KTO Trainer created by trl with the random sampler."""
if self.finetuning_args.disable_shuffling:
return torch.utils.data.SequentialSampler(self.train_dataset)
return Trainer._get_train_sampler(self)
@override
def get_batch_samples(self, *args, **kwargs):
r"""Replace the method of KTO Trainer with the one of the standard Trainer."""
return Trainer.get_batch_samples(self, *args, **kwargs)
@override
def forward(
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
r"""Run forward pass and computes the log probabilities."""
batch = nested_detach(batch, clone=True) # avoid error
model_inputs = {
"input_ids": batch[f"{prefix}input_ids"],
"attention_mask": batch[f"{prefix}attention_mask"],
}
if f"{prefix}token_type_ids" in batch:
model_inputs["token_type_ids"] = batch[f"{prefix}token_type_ids"]
if "pixel_values" in batch:
model_inputs["pixel_values"] = batch["pixel_values"]
if "image_sizes" in batch:
model_inputs["image_sizes"] = batch["image_sizes"]
if "image_grid_thw" in batch:
model_inputs["image_grid_thw"] = batch["image_grid_thw"]
if "aspect_ratio_ids" in batch:
model_inputs["aspect_ratio_ids"] = batch["aspect_ratio_ids"]
if "aspect_ratio_mask" in batch:
model_inputs["aspect_ratio_mask"] = batch["aspect_ratio_mask"]
if f"{prefix}cross_attention_mask" in batch:
model_inputs["cross_attention_mask"] = batch[f"{prefix}cross_attention_mask"]
logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32)
logps, valid_length = get_batch_logps(logits=logits, labels=batch[f"{prefix}labels"])
return logits, logps, logps / valid_length
@override
def concatenated_forward(
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
target_logits, target_logps, target_logps_avg = self.forward(model, batch)
with torch.no_grad():
_, kl_logps, _ = self.forward(model, batch, prefix="kl_")
if len(target_logps) != len(batch["kto_tags"]):
raise ValueError("Mismatched shape of inputs and labels.")
chosen_logits = target_logits[batch["kto_tags"]]
chosen_logps = target_logps[batch["kto_tags"]]
rejected_logits = target_logits[~batch["kto_tags"]]
rejected_logps = target_logps[~batch["kto_tags"]]
chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, kl_logps, chosen_logps_avg
@override
def compute_reference_log_probs(
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
r"""Compute log probabilities of the reference model."""
if self.ref_model is None:
ref_model = model
ref_context = self.accelerator.unwrap_model(model).disable_adapter()
else:
ref_model = self.ref_model
ref_context = nullcontext()
with torch.no_grad(), ref_context:
reference_chosen_logps, reference_rejected_logps, _, _, reference_kl_logps, _ = self.concatenated_forward(
ref_model, batch
)
return reference_chosen_logps, reference_rejected_logps, reference_kl_logps
@override
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: dict[str, "torch.Tensor"],
) -> tuple["torch.Tensor", dict[str, "torch.Tensor"]]:
r"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
policy_kl_logps,
policy_chosen_logps_avg,
) = self.concatenated_forward(model, batch)
reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs(
model, batch
)
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
policy_chosen_logps,
policy_rejected_logps,
policy_kl_logps,
reference_chosen_logps,
reference_rejected_logps,
reference_kl_logps,
)
losses = losses.nanmean()
if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0: # remember to rescale
sft_loss = -policy_chosen_logps_avg
losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"])
num_chosen = len(chosen_rewards)
num_rejected = len(rejected_rewards)
if num_chosen > 0:
metrics["rewards/chosen_sum"] = chosen_rewards.nansum().item()
metrics["logps/chosen_sum"] = policy_chosen_logps.nansum().item()
metrics["logits/chosen_sum"] = policy_chosen_logits.nansum().item()
metrics["count/chosen"] = float(num_chosen)
if num_rejected > 0:
metrics["rewards/rejected_sum"] = rejected_rewards.nansum().item()
metrics["logps/rejected_sum"] = policy_rejected_logps.nansum().item()
metrics["logits/rejected_sum"] = policy_rejected_logits.nansum().item()
metrics["count/rejected"] = float(num_rejected)
metrics["kl"] = kl.item()
return losses, metrics
@override
def compute_loss(
self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]:
r"""Subclass and override to accept extra kwargs."""
return super().compute_loss(model, inputs, return_outputs)
@override
def log(self, logs: dict[str, float], *args, **kwargs) -> None:
r"""Log `logs` on the various objects watching training, including stored metrics."""
# logs either has "loss" or "eval_loss"
train_eval = "train" if "loss" in logs else "eval"
prefix = "eval_" if train_eval == "eval" else ""
# Add averaged stored metrics to logs
key_list, metric_list = [], []
for key, metrics in self._stored_metrics[train_eval].items():
key_list.append(key)
metric_list.append(torch.tensor(metrics, dtype=torch.float).to(self.accelerator.device).sum().item())
del self._stored_metrics[train_eval]
if len(metric_list) < 9: # pad to for all reduce
for i in range(9 - len(metric_list)):
key_list.append(f"dummy_{i}")
metric_list.append(0.0)
metric_list = torch.tensor(metric_list, dtype=torch.float).to(self.accelerator.device)
metric_list = self.accelerator.reduce(metric_list, "sum").tolist()
metric_dict: dict[str, float] = dict(zip(key_list, metric_list))
for split in ["chosen", "rejected"]: # accumulate average metrics from sums and lengths
if f"count/{split}" in metric_dict:
for key in ("rewards", "logps", "logits"):
logs[f"{prefix}{key}/{split}"] = metric_dict[f"{key}/{split}_sum"] / metric_dict[f"count/{split}"]
del metric_dict[f"{key}/{split}_sum"]
del metric_dict[f"count/{split}"]
if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs: # calculate reward margin
logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"]
for key, metric in metric_dict.items(): # add remaining items
if not key.startswith("dummy_"):
logs[key] = metric
return Trainer.log(self, logs, *args, **kwargs)