File size: 13,194 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/kto_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Union

import torch
from transformers import Trainer
from trl import KTOTrainer
from trl.trainer import disable_dropout_in_model
from typing_extensions import override

from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach


if TYPE_CHECKING:
    import torch.utils.data
    from transformers import PreTrainedModel, ProcessorMixin

    from ...hparams import FinetuningArguments


class CustomKTOTrainer(KTOTrainer):
    def __init__(
        self,
        model: Union["PreTrainedModel", torch.nn.Module],
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
        finetuning_args: "FinetuningArguments",
        processor: Optional["ProcessorMixin"],
        disable_dropout: bool = True,
        **kwargs,
    ):
        if is_transformers_version_greater_than("4.46"):
            kwargs["processing_class"] = kwargs.pop("tokenizer")

        if disable_dropout:
            disable_dropout_in_model(model)
            if ref_model is not None:
                disable_dropout_in_model(ref_model)

        self.finetuning_args = finetuning_args
        self.reference_free = False
        self.use_dpo_data_collator = True  # hack to avoid warning
        self.generate_during_eval = False  # disable at evaluation
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.precompute_ref_log_probs = False
        self._precomputed_train_ref_log_probs = False
        self._precomputed_eval_ref_log_probs = False
        self._peft_has_been_casted_to_bf16 = False

        self.ref_model = ref_model
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        # kto hyperparams
        self.beta = finetuning_args.pref_beta
        self.desirable_weight = finetuning_args.kto_chosen_weight
        self.undesirable_weight = finetuning_args.kto_rejected_weight
        self.ftx_gamma = finetuning_args.pref_ftx

        Trainer.__init__(self, model=model, **kwargs)
        self.model_accepts_loss_kwargs = False  # overwrite trainer's default behavior
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        warnings.simplefilter("ignore")  # remove gc warnings on ref model

        if ref_model is not None:
            if self.is_deepspeed_enabled:
                if not (
                    getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.ref_model = self._prepare_deepspeed(self.ref_model)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
                self.ref_model.eval()

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.use_badam:
            from badam import BAdamCallback, clip_grad_norm_old_version  # type: ignore

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

    @override
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    @override
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    @override
    def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
        r"""Replace the sequential sampler of KTO Trainer created by trl with the random sampler."""
        if self.finetuning_args.disable_shuffling:
            return torch.utils.data.SequentialSampler(self.train_dataset)

        return Trainer._get_train_sampler(self)

    @override
    def get_batch_samples(self, *args, **kwargs):
        r"""Replace the method of KTO Trainer with the one of the standard Trainer."""
        return Trainer.get_batch_samples(self, *args, **kwargs)

    @override
    def forward(
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""Run forward pass and computes the log probabilities."""
        batch = nested_detach(batch, clone=True)  # avoid error
        model_inputs = {
            "input_ids": batch[f"{prefix}input_ids"],
            "attention_mask": batch[f"{prefix}attention_mask"],
        }
        if f"{prefix}token_type_ids" in batch:
            model_inputs["token_type_ids"] = batch[f"{prefix}token_type_ids"]

        if "pixel_values" in batch:
            model_inputs["pixel_values"] = batch["pixel_values"]

        if "image_sizes" in batch:
            model_inputs["image_sizes"] = batch["image_sizes"]

        if "image_grid_thw" in batch:
            model_inputs["image_grid_thw"] = batch["image_grid_thw"]

        if "aspect_ratio_ids" in batch:
            model_inputs["aspect_ratio_ids"] = batch["aspect_ratio_ids"]

        if "aspect_ratio_mask" in batch:
            model_inputs["aspect_ratio_mask"] = batch["aspect_ratio_mask"]

        if f"{prefix}cross_attention_mask" in batch:
            model_inputs["cross_attention_mask"] = batch[f"{prefix}cross_attention_mask"]

        logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32)
        logps, valid_length = get_batch_logps(logits=logits, labels=batch[f"{prefix}labels"])
        return logits, logps, logps / valid_length

    @override
    def concatenated_forward(
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        target_logits, target_logps, target_logps_avg = self.forward(model, batch)
        with torch.no_grad():
            _, kl_logps, _ = self.forward(model, batch, prefix="kl_")

        if len(target_logps) != len(batch["kto_tags"]):
            raise ValueError("Mismatched shape of inputs and labels.")

        chosen_logits = target_logits[batch["kto_tags"]]
        chosen_logps = target_logps[batch["kto_tags"]]
        rejected_logits = target_logits[~batch["kto_tags"]]
        rejected_logps = target_logps[~batch["kto_tags"]]
        chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
        return chosen_logps, rejected_logps, chosen_logits, rejected_logits, kl_logps, chosen_logps_avg

    @override
    def compute_reference_log_probs(
        self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"]
    ) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""Compute log probabilities of the reference model."""
        if self.ref_model is None:
            ref_model = model
            ref_context = self.accelerator.unwrap_model(model).disable_adapter()
        else:
            ref_model = self.ref_model
            ref_context = nullcontext()

        with torch.no_grad(), ref_context:
            reference_chosen_logps, reference_rejected_logps, _, _, reference_kl_logps, _ = self.concatenated_forward(
                ref_model, batch
            )

        return reference_chosen_logps, reference_rejected_logps, reference_kl_logps

    @override
    def get_batch_loss_metrics(
        self,
        model: "PreTrainedModel",
        batch: dict[str, "torch.Tensor"],
    ) -> tuple["torch.Tensor", dict[str, "torch.Tensor"]]:
        r"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
        metrics = {}
        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
            policy_kl_logps,
            policy_chosen_logps_avg,
        ) = self.concatenated_forward(model, batch)
        reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs(
            model, batch
        )
        losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
            policy_chosen_logps,
            policy_rejected_logps,
            policy_kl_logps,
            reference_chosen_logps,
            reference_rejected_logps,
            reference_kl_logps,
        )
        losses = losses.nanmean()

        if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0:  # remember to rescale
            sft_loss = -policy_chosen_logps_avg
            losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"])

        num_chosen = len(chosen_rewards)
        num_rejected = len(rejected_rewards)
        if num_chosen > 0:
            metrics["rewards/chosen_sum"] = chosen_rewards.nansum().item()
            metrics["logps/chosen_sum"] = policy_chosen_logps.nansum().item()
            metrics["logits/chosen_sum"] = policy_chosen_logits.nansum().item()
            metrics["count/chosen"] = float(num_chosen)

        if num_rejected > 0:
            metrics["rewards/rejected_sum"] = rejected_rewards.nansum().item()
            metrics["logps/rejected_sum"] = policy_rejected_logps.nansum().item()
            metrics["logits/rejected_sum"] = policy_rejected_logits.nansum().item()
            metrics["count/rejected"] = float(num_rejected)

        metrics["kl"] = kl.item()
        return losses, metrics

    @override
    def compute_loss(
        self, model: "PreTrainedModel", inputs: dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
    ) -> Union["torch.Tensor", tuple["torch.Tensor", list["torch.Tensor"]]]:
        r"""Subclass and override to accept extra kwargs."""
        return super().compute_loss(model, inputs, return_outputs)

    @override
    def log(self, logs: dict[str, float], *args, **kwargs) -> None:
        r"""Log `logs` on the various objects watching training, including stored metrics."""
        # logs either has "loss" or "eval_loss"
        train_eval = "train" if "loss" in logs else "eval"
        prefix = "eval_" if train_eval == "eval" else ""
        # Add averaged stored metrics to logs
        key_list, metric_list = [], []
        for key, metrics in self._stored_metrics[train_eval].items():
            key_list.append(key)
            metric_list.append(torch.tensor(metrics, dtype=torch.float).to(self.accelerator.device).sum().item())

        del self._stored_metrics[train_eval]
        if len(metric_list) < 9:  # pad to for all reduce
            for i in range(9 - len(metric_list)):
                key_list.append(f"dummy_{i}")
                metric_list.append(0.0)

        metric_list = torch.tensor(metric_list, dtype=torch.float).to(self.accelerator.device)
        metric_list = self.accelerator.reduce(metric_list, "sum").tolist()
        metric_dict: dict[str, float] = dict(zip(key_list, metric_list))
        for split in ["chosen", "rejected"]:  # accumulate average metrics from sums and lengths
            if f"count/{split}" in metric_dict:
                for key in ("rewards", "logps", "logits"):
                    logs[f"{prefix}{key}/{split}"] = metric_dict[f"{key}/{split}_sum"] / metric_dict[f"count/{split}"]
                    del metric_dict[f"{key}/{split}_sum"]
                del metric_dict[f"count/{split}"]

        if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs:  # calculate reward margin
            logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"]

        for key, metric in metric_dict.items():  # add remaining items
            if not key.startswith("dummy_"):
                logs[key] = metric

        return Trainer.log(self, logs, *args, **kwargs)