Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Union | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from ...extras.misc import check_version | |
if TYPE_CHECKING: | |
from torch import nn | |
from transformers import PretrainedConfig, PreTrainedModel | |
from ...hparams import ModelArguments | |
def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list[Union["nn.Module", str]]) -> None: | |
check_version("deepspeed>=0.13.0") | |
from deepspeed.utils import set_z3_leaf_modules # type: ignore | |
set_z3_leaf_modules(model, leaf_modules) | |
def add_z3_leaf_module(model: "PreTrainedModel") -> None: | |
r"""Set module as a leaf module to skip partitioning in deepspeed zero3.""" | |
if not is_deepspeed_zero3_enabled(): | |
return | |
model_type = getattr(model.config, "model_type", None) | |
if model_type == "dbrx": | |
from transformers.models.dbrx.modeling_dbrx import DbrxFFN | |
_set_z3_leaf_modules(model, [DbrxFFN]) | |
if model_type == "deepseek_v2": | |
# deepseek v2 uses custom code | |
_set_z3_leaf_modules(model, ["DeepseekV2MoE"]) | |
if model_type == "deepseek_v3" or model_type == "kimi_vl": | |
# deepseek v3 and kimi vl use custom code | |
_set_z3_leaf_modules(model, ["DeepseekV3MoE"]) | |
if model_type == "granitemoe": | |
from transformers.models.granitemoe.modeling_granitemoe import GraniteMoeMoE | |
_set_z3_leaf_modules(model, [GraniteMoeMoE]) | |
if model_type == "jamba": | |
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock | |
_set_z3_leaf_modules(model, [JambaSparseMoeBlock]) | |
if model_type == "jetmoe": | |
from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE | |
_set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE]) | |
if model_type == "llama4": | |
from transformers.models.llama4.modeling_llama4 import Llama4TextMoe | |
_set_z3_leaf_modules(model, [Llama4TextMoe]) | |
if model_type == "mixtral": | |
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock | |
_set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) | |
if model_type == "olmoe": | |
from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock | |
_set_z3_leaf_modules(model, [OlmoeSparseMoeBlock]) | |
if model_type == "phimoe": | |
from transformers.models.phimoe.modeling_phimoe import PhimoeSparseMoeBlock | |
_set_z3_leaf_modules(model, [PhimoeSparseMoeBlock]) | |
if model_type == "qwen2_moe": | |
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock | |
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) | |
if model_type == "qwen3_moe": | |
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock | |
_set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock]) | |
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
model_type = getattr(config, "model_type", None) | |
if model_args.moe_aux_loss_coef is not None: | |
if model_type in [ | |
"dbrx", | |
"granitemoe", | |
"jamba", | |
"jetmoe", | |
"llama4", | |
"mixtral", | |
"olmoe", | |
"phimoe", | |
"qwen2_moe", | |
"qwen3_moe", | |
]: | |
setattr(config, "output_router_logits", is_trainable) | |
if model_type in ["granitemoe", "jamba", "llama4", "mixtral", "olmoe", "phimoe", "qwen2_moe", "qwen3_moe"]: | |
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) | |
elif model_type == "deepseek": | |
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef) | |
elif model_type == "jetmoe": | |
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef) | |