ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Union
from transformers.integrations import is_deepspeed_zero3_enabled
from ...extras.misc import check_version
if TYPE_CHECKING:
from torch import nn
from transformers import PretrainedConfig, PreTrainedModel
from ...hparams import ModelArguments
def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list[Union["nn.Module", str]]) -> None:
check_version("deepspeed>=0.13.0")
from deepspeed.utils import set_z3_leaf_modules # type: ignore
set_z3_leaf_modules(model, leaf_modules)
def add_z3_leaf_module(model: "PreTrainedModel") -> None:
r"""Set module as a leaf module to skip partitioning in deepspeed zero3."""
if not is_deepspeed_zero3_enabled():
return
model_type = getattr(model.config, "model_type", None)
if model_type == "dbrx":
from transformers.models.dbrx.modeling_dbrx import DbrxFFN
_set_z3_leaf_modules(model, [DbrxFFN])
if model_type == "deepseek_v2":
# deepseek v2 uses custom code
_set_z3_leaf_modules(model, ["DeepseekV2MoE"])
if model_type == "deepseek_v3" or model_type == "kimi_vl":
# deepseek v3 and kimi vl use custom code
_set_z3_leaf_modules(model, ["DeepseekV3MoE"])
if model_type == "granitemoe":
from transformers.models.granitemoe.modeling_granitemoe import GraniteMoeMoE
_set_z3_leaf_modules(model, [GraniteMoeMoE])
if model_type == "jamba":
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
_set_z3_leaf_modules(model, [JambaSparseMoeBlock])
if model_type == "jetmoe":
from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE
_set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE])
if model_type == "llama4":
from transformers.models.llama4.modeling_llama4 import Llama4TextMoe
_set_z3_leaf_modules(model, [Llama4TextMoe])
if model_type == "mixtral":
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
_set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
if model_type == "olmoe":
from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock
_set_z3_leaf_modules(model, [OlmoeSparseMoeBlock])
if model_type == "phimoe":
from transformers.models.phimoe.modeling_phimoe import PhimoeSparseMoeBlock
_set_z3_leaf_modules(model, [PhimoeSparseMoeBlock])
if model_type == "qwen2_moe":
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
if model_type == "qwen3_moe":
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock])
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
model_type = getattr(config, "model_type", None)
if model_args.moe_aux_loss_coef is not None:
if model_type in [
"dbrx",
"granitemoe",
"jamba",
"jetmoe",
"llama4",
"mixtral",
"olmoe",
"phimoe",
"qwen2_moe",
"qwen3_moe",
]:
setattr(config, "output_router_logits", is_trainable)
if model_type in ["granitemoe", "jamba", "llama4", "mixtral", "olmoe", "phimoe", "qwen2_moe", "qwen3_moe"]:
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif model_type == "deepseek":
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef)
elif model_type == "jetmoe":
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)