# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Union from transformers.integrations import is_deepspeed_zero3_enabled from ...extras.misc import check_version if TYPE_CHECKING: from torch import nn from transformers import PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list[Union["nn.Module", str]]) -> None: check_version("deepspeed>=0.13.0") from deepspeed.utils import set_z3_leaf_modules # type: ignore set_z3_leaf_modules(model, leaf_modules) def add_z3_leaf_module(model: "PreTrainedModel") -> None: r"""Set module as a leaf module to skip partitioning in deepspeed zero3.""" if not is_deepspeed_zero3_enabled(): return model_type = getattr(model.config, "model_type", None) if model_type == "dbrx": from transformers.models.dbrx.modeling_dbrx import DbrxFFN _set_z3_leaf_modules(model, [DbrxFFN]) if model_type == "deepseek_v2": # deepseek v2 uses custom code _set_z3_leaf_modules(model, ["DeepseekV2MoE"]) if model_type == "deepseek_v3" or model_type == "kimi_vl": # deepseek v3 and kimi vl use custom code _set_z3_leaf_modules(model, ["DeepseekV3MoE"]) if model_type == "granitemoe": from transformers.models.granitemoe.modeling_granitemoe import GraniteMoeMoE _set_z3_leaf_modules(model, [GraniteMoeMoE]) if model_type == "jamba": from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock _set_z3_leaf_modules(model, [JambaSparseMoeBlock]) if model_type == "jetmoe": from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE _set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE]) if model_type == "llama4": from transformers.models.llama4.modeling_llama4 import Llama4TextMoe _set_z3_leaf_modules(model, [Llama4TextMoe]) if model_type == "mixtral": from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock _set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) if model_type == "olmoe": from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock _set_z3_leaf_modules(model, [OlmoeSparseMoeBlock]) if model_type == "phimoe": from transformers.models.phimoe.modeling_phimoe import PhimoeSparseMoeBlock _set_z3_leaf_modules(model, [PhimoeSparseMoeBlock]) if model_type == "qwen2_moe": from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock _set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) if model_type == "qwen3_moe": from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock _set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock]) def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: model_type = getattr(config, "model_type", None) if model_args.moe_aux_loss_coef is not None: if model_type in [ "dbrx", "granitemoe", "jamba", "jetmoe", "llama4", "mixtral", "olmoe", "phimoe", "qwen2_moe", "qwen3_moe", ]: setattr(config, "output_router_logits", is_trainable) if model_type in ["granitemoe", "jamba", "llama4", "mixtral", "olmoe", "phimoe", "qwen2_moe", "qwen3_moe"]: setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) elif model_type == "deepseek": setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef) elif model_type == "jetmoe": setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)