Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import TYPE_CHECKING | |
from ...extras import logging | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig | |
from ...hparams import ModelArguments | |
logger = logging.get_logger(__name__) | |
def apply_liger_kernel( | |
config: "PretrainedConfig", | |
model_args: "ModelArguments", | |
is_trainable: bool, | |
require_logits: bool, | |
) -> None: | |
if not is_trainable or not model_args.enable_liger_kernel: | |
return | |
model_type = getattr(config, "model_type", None) | |
if model_type == "gemma": | |
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel | |
elif model_type == "gemma2": | |
from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel | |
elif model_type == "gemma3": | |
from liger_kernel.transformers import apply_liger_kernel_to_gemma3 as apply_liger_kernel | |
elif model_type == "gemma3_text": | |
from liger_kernel.transformers import apply_liger_kernel_to_gemma3_text as apply_liger_kernel | |
elif model_type == "glm4": | |
from liger_kernel.transformers import apply_liger_kernel_to_glm4 as apply_liger_kernel | |
elif model_type == "granite": | |
from liger_kernel.transformers import apply_liger_kernel_to_granite as apply_liger_kernel | |
elif model_type == "llama": | |
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel | |
elif model_type == "llava": | |
from liger_kernel.transformers import apply_liger_kernel_to_llava as apply_liger_kernel | |
elif model_type == "mistral": | |
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel | |
elif model_type == "mixtral": | |
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel | |
elif model_type == "mllama": | |
from liger_kernel.transformers import apply_liger_kernel_to_mllama as apply_liger_kernel | |
elif model_type == "olmo2": | |
from liger_kernel.transformers import apply_liger_kernel_to_olmo2 as apply_liger_kernel | |
elif model_type == "paligemma": | |
from liger_kernel.transformers import apply_liger_kernel_to_paligemma as apply_liger_kernel | |
elif model_type == "phi3": | |
from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel | |
elif model_type == "qwen2": | |
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel | |
elif model_type == "qwen2_vl": | |
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel | |
elif model_type == "qwen2_5_vl": | |
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_5_vl as apply_liger_kernel | |
elif model_type == "qwen3": | |
from liger_kernel.transformers import apply_liger_kernel_to_qwen3 as apply_liger_kernel | |
else: | |
logger.warning_rank0("Current model does not support liger kernel.") | |
return | |
if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters: | |
logger.info_rank0("Current training stage does not support chunked cross entropy.") | |
kwargs = {"fused_linear_cross_entropy": False, "cross_entropy": True} | |
else: | |
kwargs = {} | |
apply_liger_kernel(**kwargs) | |
logger.info_rank0("Liger kernel has been applied to the model.") | |