# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import TYPE_CHECKING from ...extras import logging if TYPE_CHECKING: from transformers import PretrainedConfig from ...hparams import ModelArguments logger = logging.get_logger(__name__) def apply_liger_kernel( config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool, require_logits: bool, ) -> None: if not is_trainable or not model_args.enable_liger_kernel: return model_type = getattr(config, "model_type", None) if model_type == "gemma": from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel elif model_type == "gemma2": from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel elif model_type == "gemma3": from liger_kernel.transformers import apply_liger_kernel_to_gemma3 as apply_liger_kernel elif model_type == "gemma3_text": from liger_kernel.transformers import apply_liger_kernel_to_gemma3_text as apply_liger_kernel elif model_type == "glm4": from liger_kernel.transformers import apply_liger_kernel_to_glm4 as apply_liger_kernel elif model_type == "granite": from liger_kernel.transformers import apply_liger_kernel_to_granite as apply_liger_kernel elif model_type == "llama": from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel elif model_type == "llava": from liger_kernel.transformers import apply_liger_kernel_to_llava as apply_liger_kernel elif model_type == "mistral": from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel elif model_type == "mixtral": from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel elif model_type == "mllama": from liger_kernel.transformers import apply_liger_kernel_to_mllama as apply_liger_kernel elif model_type == "olmo2": from liger_kernel.transformers import apply_liger_kernel_to_olmo2 as apply_liger_kernel elif model_type == "paligemma": from liger_kernel.transformers import apply_liger_kernel_to_paligemma as apply_liger_kernel elif model_type == "phi3": from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel elif model_type == "qwen2": from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel elif model_type == "qwen2_vl": from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel elif model_type == "qwen2_5_vl": from liger_kernel.transformers import apply_liger_kernel_to_qwen2_5_vl as apply_liger_kernel elif model_type == "qwen3": from liger_kernel.transformers import apply_liger_kernel_to_qwen3 as apply_liger_kernel else: logger.warning_rank0("Current model does not support liger kernel.") return if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters: logger.info_rank0("Current training stage does not support chunked cross entropy.") kwargs = {"fused_linear_cross_entropy": False, "cross_entropy": True} else: kwargs = {} apply_liger_kernel(**kwargs) logger.info_rank0("Liger kernel has been applied to the model.")