ferid197's picture
Upload folder using huggingface_hub
e81015c verified
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
from ...extras.constants import IGNORE_INDEX
from .processor_utils import DatasetProcessor, infer_seqlen
if TYPE_CHECKING:
from ..mm_plugin import AudioInput, ImageInput, VideoInput
logger = logging.get_logger(__name__)
class PairwiseDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int], list[int], list[int]]:
chosen_messages = self.template.mm_plugin.process_messages(
prompt + [response[0]], images, videos, audios, self.processor
)
rejected_messages = self.template.mm_plugin.process_messages(
prompt + [response[1]], images, videos, audios, self.processor
)
prompt_ids, chosen_ids = self.template.encode_oneturn(self.tokenizer, chosen_messages, system, tools)
_, rejected_ids = self.template.encode_oneturn(self.tokenizer, rejected_messages, system, tools)
if self.template.efficient_eos:
chosen_ids += [self.tokenizer.eos_token_id]
rejected_ids += [self.tokenizer.eos_token_id]
prompt_ids, _ = self.template.mm_plugin.process_token_ids(
prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
)
# consider the response is more important
source_len, target_len = infer_seqlen(
len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), self.data_args.cutoff_len
)
prompt_ids = prompt_ids[:source_len]
chosen_ids = chosen_ids[:target_len]
rejected_ids = rejected_ids[:target_len]
chosen_input_ids = prompt_ids + chosen_ids
chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids
rejected_input_ids = prompt_ids + rejected_ids
rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = defaultdict(list)
for i in range(len(examples["_prompt"])):
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
logger.warning_rank0(
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
)
continue
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = self._encode_data_example(
prompt=examples["_prompt"][i],
response=examples["_response"][i],
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
)
model_inputs["chosen_input_ids"].append(chosen_input_ids)
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
model_inputs["chosen_labels"].append(chosen_labels)
model_inputs["rejected_input_ids"].append(rejected_input_ids)
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
model_inputs["rejected_labels"].append(rejected_labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs
def print_data_example(self, example: dict[str, list[int]]) -> None:
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
print(
"chosen_inputs:\n{}".format(self.tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))
)
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
print(f"chosen_labels:\n{self.tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)}")
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
print(
"rejected_inputs:\n{}".format(
self.tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)
)
)
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
print(f"rejected_labels:\n{self.tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)}")