# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Any, Optional from ...extras import logging from ...extras.constants import IGNORE_INDEX from .processor_utils import DatasetProcessor, infer_seqlen if TYPE_CHECKING: from ..mm_plugin import AudioInput, ImageInput, VideoInput logger = logging.get_logger(__name__) class PairwiseDatasetProcessor(DatasetProcessor): def _encode_data_example( self, prompt: list[dict[str, str]], response: list[dict[str, str]], system: Optional[str], tools: Optional[str], images: list["ImageInput"], videos: list["VideoInput"], audios: list["AudioInput"], ) -> tuple[list[int], list[int], list[int], list[int]]: chosen_messages = self.template.mm_plugin.process_messages( prompt + [response[0]], images, videos, audios, self.processor ) rejected_messages = self.template.mm_plugin.process_messages( prompt + [response[1]], images, videos, audios, self.processor ) prompt_ids, chosen_ids = self.template.encode_oneturn(self.tokenizer, chosen_messages, system, tools) _, rejected_ids = self.template.encode_oneturn(self.tokenizer, rejected_messages, system, tools) if self.template.efficient_eos: chosen_ids += [self.tokenizer.eos_token_id] rejected_ids += [self.tokenizer.eos_token_id] prompt_ids, _ = self.template.mm_plugin.process_token_ids( prompt_ids, None, images, videos, audios, self.tokenizer, self.processor ) # consider the response is more important source_len, target_len = infer_seqlen( len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), self.data_args.cutoff_len ) prompt_ids = prompt_ids[:source_len] chosen_ids = chosen_ids[:target_len] rejected_ids = rejected_ids[:target_len] chosen_input_ids = prompt_ids + chosen_ids chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids rejected_input_ids = prompt_ids + rejected_ids rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels def preprocess_dataset(self, examples: dict[str, list[Any]]) -> dict[str, list[Any]]: # build input pairs with format ` X`, `Y1 ` and `Y2 ` model_inputs = defaultdict(list) for i in range(len(examples["_prompt"])): if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2: logger.warning_rank0( "Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]) ) continue chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = self._encode_data_example( prompt=examples["_prompt"][i], response=examples["_response"][i], system=examples["_system"][i], tools=examples["_tools"][i], images=examples["_images"][i] or [], videos=examples["_videos"][i] or [], audios=examples["_audios"][i] or [], ) model_inputs["chosen_input_ids"].append(chosen_input_ids) model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids)) model_inputs["chosen_labels"].append(chosen_labels) model_inputs["rejected_input_ids"].append(rejected_input_ids) model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids)) model_inputs["rejected_labels"].append(rejected_labels) model_inputs["images"].append(examples["_images"][i]) model_inputs["videos"].append(examples["_videos"][i]) model_inputs["audios"].append(examples["_audios"][i]) return model_inputs def print_data_example(self, example: dict[str, list[int]]) -> None: valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"])) valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"])) print("chosen_input_ids:\n{}".format(example["chosen_input_ids"])) print( "chosen_inputs:\n{}".format(self.tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False)) ) print("chosen_label_ids:\n{}".format(example["chosen_labels"])) print(f"chosen_labels:\n{self.tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)}") print("rejected_input_ids:\n{}".format(example["rejected_input_ids"])) print( "rejected_inputs:\n{}".format( self.tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False) ) ) print("rejected_label_ids:\n{}".format(example["rejected_labels"])) print(f"rejected_labels:\n{self.tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)}")