Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
from enum import Enum, unique | |
from typing import TYPE_CHECKING, Optional, TypedDict, Union | |
import fsspec | |
from datasets import DatasetDict, concatenate_datasets, interleave_datasets | |
from ..extras import logging | |
if TYPE_CHECKING: | |
from datasets import Dataset, IterableDataset | |
from ..hparams import DataArguments | |
logger = logging.get_logger(__name__) | |
SLOTS = list[Union[str, set[str], dict[str, str]]] | |
class Role(str, Enum): | |
USER = "user" | |
ASSISTANT = "assistant" | |
SYSTEM = "system" | |
FUNCTION = "function" | |
OBSERVATION = "observation" | |
class DatasetModule(TypedDict): | |
train_dataset: Optional[Union["Dataset", "IterableDataset"]] | |
eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]] | |
def merge_dataset( | |
all_datasets: list[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int | |
) -> Union["Dataset", "IterableDataset"]: | |
r"""Merge multiple datasets to a unified dataset.""" | |
if len(all_datasets) == 1: | |
return all_datasets[0] | |
elif data_args.mix_strategy == "concat": | |
if data_args.streaming: | |
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.") | |
return concatenate_datasets(all_datasets) | |
elif data_args.mix_strategy.startswith("interleave"): | |
if not data_args.streaming: | |
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.") | |
return interleave_datasets( | |
datasets=all_datasets, | |
probabilities=data_args.interleave_probs, | |
seed=seed, | |
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted", | |
) | |
else: | |
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.") | |
def split_dataset( | |
dataset: Optional[Union["Dataset", "IterableDataset"]], | |
eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]], | |
data_args: "DataArguments", | |
seed: int, | |
) -> "DatasetDict": | |
r"""Split the dataset and returns a dataset dict containing train set and validation set. | |
Support both map dataset and iterable dataset. | |
""" | |
if eval_dataset is not None and data_args.val_size > 1e-6: | |
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.") | |
dataset_dict = {} | |
if dataset is not None: | |
if data_args.streaming: | |
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed) | |
if data_args.val_size > 1e-6: | |
if data_args.streaming: | |
dataset_dict["validation"] = dataset.take(int(data_args.val_size)) | |
dataset_dict["train"] = dataset.skip(int(data_args.val_size)) | |
else: | |
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size | |
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed) | |
dataset = dataset.train_test_split(test_size=val_size, seed=seed) | |
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]} | |
else: | |
dataset_dict["train"] = dataset | |
if eval_dataset is not None: | |
if isinstance(eval_dataset, dict): | |
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()}) | |
else: | |
if data_args.streaming: | |
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed) | |
dataset_dict["validation"] = eval_dataset | |
return DatasetDict(dataset_dict) | |
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule": | |
r"""Convert dataset or dataset dict to dataset module.""" | |
dataset_module: DatasetModule = {} | |
if isinstance(dataset, DatasetDict): # dataset dict | |
if "train" in dataset: | |
dataset_module["train_dataset"] = dataset["train"] | |
if "validation" in dataset: | |
dataset_module["eval_dataset"] = dataset["validation"] | |
else: | |
eval_dataset = {} | |
for key in dataset.keys(): | |
if key.startswith("validation_"): | |
eval_dataset[key[len("validation_") :]] = dataset[key] | |
if len(eval_dataset): | |
dataset_module["eval_dataset"] = eval_dataset | |
else: # single dataset | |
dataset_module["train_dataset"] = dataset | |
return dataset_module | |
def setup_fs(path, anon=False): | |
"""Set up a filesystem object based on the path protocol.""" | |
storage_options = {"anon": anon} if anon else {} | |
if path.startswith("s3://"): | |
fs = fsspec.filesystem("s3", **storage_options) | |
elif path.startswith(("gs://", "gcs://")): | |
fs = fsspec.filesystem("gcs", **storage_options) | |
else: | |
raise ValueError(f"Unsupported protocol in path: {path}. Use 's3://' or 'gs://'") | |
return fs | |
def read_cloud_json(cloud_path): | |
"""Read a JSON/JSONL file from cloud storage (S3 or GCS). | |
Args: | |
cloud_path : str | |
Cloud path in the format: | |
- 's3://bucket-name/file.json' for AWS S3 | |
- 'gs://bucket-name/file.jsonl' or 'gcs://bucket-name/file.jsonl' for Google Cloud Storage | |
lines : bool, default=True | |
If True, read the file as JSON Lines format (one JSON object per line) | |
""" | |
try: | |
# Try with anonymous access first | |
fs = setup_fs(cloud_path, anon=True) | |
return _read_json_with_fs(fs, cloud_path, lines=cloud_path.endswith(".jsonl")) | |
except Exception: | |
# Try again with credentials | |
fs = setup_fs(cloud_path) | |
return _read_json_with_fs(fs, cloud_path, lines=cloud_path.endswith(".jsonl")) | |
def _read_json_with_fs(fs, path, lines=True): | |
"""Helper function to read JSON/JSONL files using fsspec.""" | |
with fs.open(path, "r") as f: | |
if lines: | |
# Read JSONL (JSON Lines) format - one JSON object per line | |
data = [json.loads(line) for line in f if line.strip()] | |
else: | |
# Read regular JSON format | |
data = json.load(f) | |
return data | |