Spaces:
Running
Running
File size: 6,783 Bytes
e81015c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from enum import Enum, unique
from typing import TYPE_CHECKING, Optional, TypedDict, Union
import fsspec
from datasets import DatasetDict, concatenate_datasets, interleave_datasets
from ..extras import logging
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from ..hparams import DataArguments
logger = logging.get_logger(__name__)
SLOTS = list[Union[str, set[str], dict[str, str]]]
@unique
class Role(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
FUNCTION = "function"
OBSERVATION = "observation"
class DatasetModule(TypedDict):
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]
def merge_dataset(
all_datasets: list[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int
) -> Union["Dataset", "IterableDataset"]:
r"""Merge multiple datasets to a unified dataset."""
if len(all_datasets) == 1:
return all_datasets[0]
elif data_args.mix_strategy == "concat":
if data_args.streaming:
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
return concatenate_datasets(all_datasets)
elif data_args.mix_strategy.startswith("interleave"):
if not data_args.streaming:
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
return interleave_datasets(
datasets=all_datasets,
probabilities=data_args.interleave_probs,
seed=seed,
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
)
else:
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
def split_dataset(
dataset: Optional[Union["Dataset", "IterableDataset"]],
eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]],
data_args: "DataArguments",
seed: int,
) -> "DatasetDict":
r"""Split the dataset and returns a dataset dict containing train set and validation set.
Support both map dataset and iterable dataset.
"""
if eval_dataset is not None and data_args.val_size > 1e-6:
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
dataset_dict = {}
if dataset is not None:
if data_args.streaming:
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
if data_args.val_size > 1e-6:
if data_args.streaming:
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
else:
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
else:
dataset_dict["train"] = dataset
if eval_dataset is not None:
if isinstance(eval_dataset, dict):
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
else:
if data_args.streaming:
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
dataset_dict["validation"] = eval_dataset
return DatasetDict(dataset_dict)
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
r"""Convert dataset or dataset dict to dataset module."""
dataset_module: DatasetModule = {}
if isinstance(dataset, DatasetDict): # dataset dict
if "train" in dataset:
dataset_module["train_dataset"] = dataset["train"]
if "validation" in dataset:
dataset_module["eval_dataset"] = dataset["validation"]
else:
eval_dataset = {}
for key in dataset.keys():
if key.startswith("validation_"):
eval_dataset[key[len("validation_") :]] = dataset[key]
if len(eval_dataset):
dataset_module["eval_dataset"] = eval_dataset
else: # single dataset
dataset_module["train_dataset"] = dataset
return dataset_module
def setup_fs(path, anon=False):
"""Set up a filesystem object based on the path protocol."""
storage_options = {"anon": anon} if anon else {}
if path.startswith("s3://"):
fs = fsspec.filesystem("s3", **storage_options)
elif path.startswith(("gs://", "gcs://")):
fs = fsspec.filesystem("gcs", **storage_options)
else:
raise ValueError(f"Unsupported protocol in path: {path}. Use 's3://' or 'gs://'")
return fs
def read_cloud_json(cloud_path):
"""Read a JSON/JSONL file from cloud storage (S3 or GCS).
Args:
cloud_path : str
Cloud path in the format:
- 's3://bucket-name/file.json' for AWS S3
- 'gs://bucket-name/file.jsonl' or 'gcs://bucket-name/file.jsonl' for Google Cloud Storage
lines : bool, default=True
If True, read the file as JSON Lines format (one JSON object per line)
"""
try:
# Try with anonymous access first
fs = setup_fs(cloud_path, anon=True)
return _read_json_with_fs(fs, cloud_path, lines=cloud_path.endswith(".jsonl"))
except Exception:
# Try again with credentials
fs = setup_fs(cloud_path)
return _read_json_with_fs(fs, cloud_path, lines=cloud_path.endswith(".jsonl"))
def _read_json_with_fs(fs, path, lines=True):
"""Helper function to read JSON/JSONL files using fsspec."""
with fs.open(path, "r") as f:
if lines:
# Read JSONL (JSON Lines) format - one JSON object per line
data = [json.loads(line) for line in f if line.strip()]
else:
# Read regular JSON format
data = json.load(f)
return data
|