Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from abc import abstractmethod | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Any, Optional, Union | |
from ..extras import logging | |
from .data_utils import Role | |
if TYPE_CHECKING: | |
from datasets import Dataset, IterableDataset | |
from transformers import Seq2SeqTrainingArguments | |
from ..hparams import DataArguments | |
from .mm_plugin import AudioInput, ImageInput, VideoInput | |
from .parser import DatasetAttr | |
MediaType = Union[ImageInput, VideoInput, AudioInput] | |
logger = logging.get_logger(__name__) | |
class DatasetConverter: | |
dataset_attr: "DatasetAttr" | |
data_args: "DataArguments" | |
def _find_medias(self, medias: Union["MediaType", list["MediaType"], None]) -> Optional[list["MediaType"]]: | |
r"""Optionally concatenate media path to media dir when loading from local disk.""" | |
if medias is None: | |
return None | |
elif not isinstance(medias, list): | |
medias = [medias] | |
elif len(medias) == 0: | |
return None | |
else: | |
medias = medias[:] | |
if self.dataset_attr.load_from in ["script", "file"] and isinstance(medias[0], str): | |
for i in range(len(medias)): | |
if os.path.isfile(os.path.join(self.data_args.media_dir, medias[i])): | |
medias[i] = os.path.join(self.data_args.media_dir, medias[i]) | |
else: | |
logger.warning_rank0_once(f"Media {medias[i]} does not exist in `media_dir`. Use original path.") | |
return medias | |
def __call__(self, example: dict[str, Any]) -> dict[str, Any]: | |
r"""Convert a single example in the dataset to the standard format.""" | |
... | |
class AlpacaDatasetConverter(DatasetConverter): | |
def __call__(self, example: dict[str, Any]) -> dict[str, Any]: | |
prompt = [] | |
if self.dataset_attr.history and isinstance(example[self.dataset_attr.history], list): | |
for old_prompt, old_response in example[self.dataset_attr.history]: | |
prompt.append({"role": Role.USER.value, "content": old_prompt}) | |
prompt.append({"role": Role.ASSISTANT.value, "content": old_response}) | |
query = [] | |
if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: | |
query.append(example[self.dataset_attr.prompt]) | |
if self.dataset_attr.query and example[self.dataset_attr.query]: | |
query.append(example[self.dataset_attr.query]) | |
prompt.append({"role": Role.USER.value, "content": "\n".join(query)}) # "prompt\nquery" | |
if self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool): # kto example | |
response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}] | |
if example[self.dataset_attr.kto_tag]: | |
response = response + [{"role": Role.ASSISTANT.value, "content": ""}] | |
else: | |
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response | |
elif ( | |
self.dataset_attr.ranking | |
and isinstance(example[self.dataset_attr.chosen], str) | |
and isinstance(example[self.dataset_attr.rejected], str) | |
): # pairwise example | |
response = [ | |
{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.chosen]}, | |
{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.rejected]}, | |
] | |
elif self.dataset_attr.response and isinstance(example[self.dataset_attr.response], str): # normal example | |
response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}] | |
else: # unsupervised | |
response = [] | |
output = { | |
"_prompt": prompt, | |
"_response": response, | |
"_system": example[self.dataset_attr.system] if self.dataset_attr.system else "", | |
"_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "", | |
"_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None, | |
"_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None, | |
"_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None, | |
} | |
return output | |
class SharegptDatasetConverter(DatasetConverter): | |
def __call__(self, example: dict[str, Any]) -> dict[str, Any]: | |
tag_mapping = { | |
self.dataset_attr.user_tag: Role.USER.value, | |
self.dataset_attr.assistant_tag: Role.ASSISTANT.value, | |
self.dataset_attr.observation_tag: Role.OBSERVATION.value, | |
self.dataset_attr.function_tag: Role.FUNCTION.value, | |
self.dataset_attr.system_tag: Role.SYSTEM.value, | |
} | |
odd_tags = (self.dataset_attr.user_tag, self.dataset_attr.observation_tag) | |
even_tags = (self.dataset_attr.assistant_tag, self.dataset_attr.function_tag) | |
accept_tags = (odd_tags, even_tags) | |
messages = example[self.dataset_attr.messages] | |
if ( | |
self.dataset_attr.system_tag | |
and len(messages) != 0 | |
and messages[0][self.dataset_attr.role_tag] == self.dataset_attr.system_tag | |
): | |
system = messages[0][self.dataset_attr.content_tag] | |
messages = messages[1:] | |
else: | |
system = example[self.dataset_attr.system] if self.dataset_attr.system else "" | |
aligned_messages = [] | |
broken_data = False | |
for turn_idx, message in enumerate(messages): | |
if message[self.dataset_attr.role_tag] not in accept_tags[turn_idx % 2]: | |
logger.warning_rank0(f"Invalid role tag in {messages}.") | |
broken_data = True | |
break | |
aligned_messages.append( | |
{ | |
"role": tag_mapping[message[self.dataset_attr.role_tag]], | |
"content": message[self.dataset_attr.content_tag], | |
} | |
) | |
if (not self.dataset_attr.ranking and len(aligned_messages) % 2 != 0) or ( | |
self.dataset_attr.ranking and len(aligned_messages) % 2 == 0 | |
): | |
logger.warning_rank0(f"Invalid message count in {messages}.") | |
broken_data = True | |
if broken_data: | |
logger.warning_rank0("Skipping this abnormal example.") | |
prompt, response = [], [] | |
elif self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool): # kto example | |
prompt = aligned_messages[:-1] | |
response = aligned_messages[-1:] | |
if example[self.dataset_attr.kto_tag]: | |
response = response + [{"role": Role.ASSISTANT.value, "content": ""}] | |
else: | |
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response | |
elif ( | |
self.dataset_attr.ranking | |
and isinstance(example[self.dataset_attr.chosen], dict) | |
and isinstance(example[self.dataset_attr.rejected], dict) | |
): # pairwise example | |
chosen = example[self.dataset_attr.chosen] | |
rejected = example[self.dataset_attr.rejected] | |
if ( | |
chosen[self.dataset_attr.role_tag] not in accept_tags[-1] | |
or rejected[self.dataset_attr.role_tag] not in accept_tags[-1] | |
): | |
logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.") | |
broken_data = True | |
prompt = aligned_messages | |
response = [ | |
{ | |
"role": tag_mapping[chosen[self.dataset_attr.role_tag]], | |
"content": chosen[self.dataset_attr.content_tag], | |
}, | |
{ | |
"role": tag_mapping[rejected[self.dataset_attr.role_tag]], | |
"content": rejected[self.dataset_attr.content_tag], | |
}, | |
] | |
else: # normal example | |
prompt = aligned_messages[:-1] | |
response = aligned_messages[-1:] | |
output = { | |
"_prompt": prompt, | |
"_response": response, | |
"_system": system, | |
"_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "", | |
"_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None, | |
"_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None, | |
"_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None, | |
} | |
return output | |
DATASET_CONVERTERS = { | |
"alpaca": AlpacaDatasetConverter, | |
"sharegpt": SharegptDatasetConverter, | |
} | |
def register_dataset_converter(name: str, dataset_converter: type["DatasetConverter"]) -> None: | |
r"""Register a new dataset converter.""" | |
if name in DATASET_CONVERTERS: | |
raise ValueError(f"Dataset converter {name} already exists.") | |
DATASET_CONVERTERS[name] = dataset_converter | |
def get_dataset_converter(name: str, dataset_attr: "DatasetAttr", data_args: "DataArguments") -> "DatasetConverter": | |
r"""Get a dataset converter.""" | |
if name not in DATASET_CONVERTERS: | |
raise ValueError(f"Dataset converter {name} not found.") | |
return DATASET_CONVERTERS[name](dataset_attr, data_args) | |
def align_dataset( | |
dataset: Union["Dataset", "IterableDataset"], | |
dataset_attr: "DatasetAttr", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
) -> Union["Dataset", "IterableDataset"]: | |
r"""Align the dataset to a specific format. | |
Aligned dataset: | |
_prompt: [{"role": "user", "content": "..."}] * (2T - 1) | |
_response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset) | |
_system: "..." | |
_tools: "..." | |
_images: [] | |
_videos: [] | |
_audios: [] | |
""" | |
column_names = list(next(iter(dataset)).keys()) | |
kwargs = {} | |
if not data_args.streaming: | |
kwargs = dict( | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), | |
desc="Converting format of dataset", | |
) | |
dataset_converter = get_dataset_converter(dataset_attr.formatting, dataset_attr, data_args) | |
return dataset.map( | |
dataset_converter, | |
batched=False, | |
remove_columns=column_names, | |
**kwargs, | |
) | |