File size: 11,213 Bytes
e81015c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from abc import abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional, Union

from ..extras import logging
from .data_utils import Role


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import Seq2SeqTrainingArguments

    from ..hparams import DataArguments
    from .mm_plugin import AudioInput, ImageInput, VideoInput
    from .parser import DatasetAttr

    MediaType = Union[ImageInput, VideoInput, AudioInput]


logger = logging.get_logger(__name__)


@dataclass
class DatasetConverter:
    dataset_attr: "DatasetAttr"
    data_args: "DataArguments"

    def _find_medias(self, medias: Union["MediaType", list["MediaType"], None]) -> Optional[list["MediaType"]]:
        r"""Optionally concatenate media path to media dir when loading from local disk."""
        if medias is None:
            return None
        elif not isinstance(medias, list):
            medias = [medias]
        elif len(medias) == 0:
            return None
        else:
            medias = medias[:]

        if self.dataset_attr.load_from in ["script", "file"] and isinstance(medias[0], str):
            for i in range(len(medias)):
                if os.path.isfile(os.path.join(self.data_args.media_dir, medias[i])):
                    medias[i] = os.path.join(self.data_args.media_dir, medias[i])
                else:
                    logger.warning_rank0_once(f"Media {medias[i]} does not exist in `media_dir`. Use original path.")

        return medias

    @abstractmethod
    def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
        r"""Convert a single example in the dataset to the standard format."""
        ...


@dataclass
class AlpacaDatasetConverter(DatasetConverter):
    def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
        prompt = []
        if self.dataset_attr.history and isinstance(example[self.dataset_attr.history], list):
            for old_prompt, old_response in example[self.dataset_attr.history]:
                prompt.append({"role": Role.USER.value, "content": old_prompt})
                prompt.append({"role": Role.ASSISTANT.value, "content": old_response})

        query = []
        if self.dataset_attr.prompt and example[self.dataset_attr.prompt]:
            query.append(example[self.dataset_attr.prompt])

        if self.dataset_attr.query and example[self.dataset_attr.query]:
            query.append(example[self.dataset_attr.query])

        prompt.append({"role": Role.USER.value, "content": "\n".join(query)})  # "prompt\nquery"

        if self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool):  # kto example
            response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}]
            if example[self.dataset_attr.kto_tag]:
                response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
            else:
                response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
        elif (
            self.dataset_attr.ranking
            and isinstance(example[self.dataset_attr.chosen], str)
            and isinstance(example[self.dataset_attr.rejected], str)
        ):  # pairwise example
            response = [
                {"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.chosen]},
                {"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.rejected]},
            ]
        elif self.dataset_attr.response and isinstance(example[self.dataset_attr.response], str):  # normal example
            response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}]
        else:  # unsupervised
            response = []

        output = {
            "_prompt": prompt,
            "_response": response,
            "_system": example[self.dataset_attr.system] if self.dataset_attr.system else "",
            "_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "",
            "_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
            "_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
            "_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
        }
        return output


@dataclass
class SharegptDatasetConverter(DatasetConverter):
    def __call__(self, example: dict[str, Any]) -> dict[str, Any]:
        tag_mapping = {
            self.dataset_attr.user_tag: Role.USER.value,
            self.dataset_attr.assistant_tag: Role.ASSISTANT.value,
            self.dataset_attr.observation_tag: Role.OBSERVATION.value,
            self.dataset_attr.function_tag: Role.FUNCTION.value,
            self.dataset_attr.system_tag: Role.SYSTEM.value,
        }
        odd_tags = (self.dataset_attr.user_tag, self.dataset_attr.observation_tag)
        even_tags = (self.dataset_attr.assistant_tag, self.dataset_attr.function_tag)
        accept_tags = (odd_tags, even_tags)
        messages = example[self.dataset_attr.messages]
        if (
            self.dataset_attr.system_tag
            and len(messages) != 0
            and messages[0][self.dataset_attr.role_tag] == self.dataset_attr.system_tag
        ):
            system = messages[0][self.dataset_attr.content_tag]
            messages = messages[1:]
        else:
            system = example[self.dataset_attr.system] if self.dataset_attr.system else ""

        aligned_messages = []
        broken_data = False
        for turn_idx, message in enumerate(messages):
            if message[self.dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
                logger.warning_rank0(f"Invalid role tag in {messages}.")
                broken_data = True
                break

            aligned_messages.append(
                {
                    "role": tag_mapping[message[self.dataset_attr.role_tag]],
                    "content": message[self.dataset_attr.content_tag],
                }
            )

        if (not self.dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
            self.dataset_attr.ranking and len(aligned_messages) % 2 == 0
        ):
            logger.warning_rank0(f"Invalid message count in {messages}.")
            broken_data = True

        if broken_data:
            logger.warning_rank0("Skipping this abnormal example.")
            prompt, response = [], []
        elif self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool):  # kto example
            prompt = aligned_messages[:-1]
            response = aligned_messages[-1:]
            if example[self.dataset_attr.kto_tag]:
                response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
            else:
                response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
        elif (
            self.dataset_attr.ranking
            and isinstance(example[self.dataset_attr.chosen], dict)
            and isinstance(example[self.dataset_attr.rejected], dict)
        ):  # pairwise example
            chosen = example[self.dataset_attr.chosen]
            rejected = example[self.dataset_attr.rejected]
            if (
                chosen[self.dataset_attr.role_tag] not in accept_tags[-1]
                or rejected[self.dataset_attr.role_tag] not in accept_tags[-1]
            ):
                logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.")
                broken_data = True

            prompt = aligned_messages
            response = [
                {
                    "role": tag_mapping[chosen[self.dataset_attr.role_tag]],
                    "content": chosen[self.dataset_attr.content_tag],
                },
                {
                    "role": tag_mapping[rejected[self.dataset_attr.role_tag]],
                    "content": rejected[self.dataset_attr.content_tag],
                },
            ]
        else:  # normal example
            prompt = aligned_messages[:-1]
            response = aligned_messages[-1:]

        output = {
            "_prompt": prompt,
            "_response": response,
            "_system": system,
            "_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "",
            "_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
            "_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
            "_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
        }
        return output


DATASET_CONVERTERS = {
    "alpaca": AlpacaDatasetConverter,
    "sharegpt": SharegptDatasetConverter,
}


def register_dataset_converter(name: str, dataset_converter: type["DatasetConverter"]) -> None:
    r"""Register a new dataset converter."""
    if name in DATASET_CONVERTERS:
        raise ValueError(f"Dataset converter {name} already exists.")

    DATASET_CONVERTERS[name] = dataset_converter


def get_dataset_converter(name: str, dataset_attr: "DatasetAttr", data_args: "DataArguments") -> "DatasetConverter":
    r"""Get a dataset converter."""
    if name not in DATASET_CONVERTERS:
        raise ValueError(f"Dataset converter {name} not found.")

    return DATASET_CONVERTERS[name](dataset_attr, data_args)


def align_dataset(
    dataset: Union["Dataset", "IterableDataset"],
    dataset_attr: "DatasetAttr",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
    r"""Align the dataset to a specific format.

    Aligned dataset:
    _prompt: [{"role": "user", "content": "..."}] * (2T - 1)
    _response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
    _system: "..."
    _tools: "..."
    _images: []
    _videos: []
    _audios: []
    """
    column_names = list(next(iter(dataset)).keys())
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Converting format of dataset",
        )

    dataset_converter = get_dataset_converter(dataset_attr.formatting, dataset_attr, data_args)
    return dataset.map(
        dataset_converter,
        batched=False,
        remove_columns=column_names,
        **kwargs,
    )