CXR / app.py
fecia's picture
Update app.py
a03be3c verified
raw
history blame
20.5 kB
import gradio as gr
import os
import io
import png
import tensorflow as tf
import tensorflow_text as tf_text
import tensorflow_hub as tf_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import traceback
import time
import pandas as pd # Para formatear la salida en tabla
# --- Configuración ---
MODEL_REPO_ID = "google/cxr-foundation"
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
# Umbrales
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
# --- Prompts ---
criteria_list_positive = [
"optimal centering", "optimal inspiration", "optimal penetration",
"complete field of view", "scapulae retracted", "sharp image", "artifact free"
]
criteria_list_negative = [
"poorly centered", "poor inspiration", "non-diagnostic exposure",
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
]
# --- Funciones Auxiliares (Integradas o adaptadas) ---
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
def preprocess_text(text):
"""Función interna del preprocesador BERT."""
return bert_preprocessor_global(text)
def bert_tokenize(text, preprocessor):
"""Tokeniza texto usando el preprocesador BERT cargado globalmente."""
if preprocessor is None:
raise ValueError("BERT preprocessor no está cargado.")
if not isinstance(text, str): text = str(text)
# Ejecutar el preprocesador
out = preprocessor(tf.constant([text.lower()]))
# Extraer y procesar IDs y máscaras
ids = out['input_word_ids'].numpy().astype(np.int32)
masks = out['input_mask'].numpy().astype(np.float32)
paddings = 1.0 - masks
# Reemplazar token [SEP] (102) por 0 y marcar como padding
end_token_idx = (ids == 102)
ids[end_token_idx] = 0
paddings[end_token_idx] = 1.0
# Asegurar las dimensiones (B, T, S) -> (1, 1, 128)
# El preprocesador puede devolver (1, 128), necesitamos (1, 1, 128)
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
# Verificar formas finales
expected_shape = (1, 1, 128)
if ids.shape != expected_shape:
# Intentar reajustar si es necesario (puede pasar con algunas versiones)
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
if paddings.shape != expected_shape:
if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
return ids, paddings
def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
"""Crea tf.train.Example desde NumPy array (escala de grises)."""
if image_array.ndim == 3 and image_array.shape[2] == 1:
image_array = np.squeeze(image_array, axis=2) # Asegurar 2D
elif image_array.ndim != 2:
raise ValueError(f'Array debe ser 2-D (escala de grises). Dimensiones actuales: {image_array.ndim}')
image = image_array.astype(np.float32)
min_val = image.min()
max_val = image.max()
# Evitar división por cero si la imagen es constante
if max_val <= min_val:
# Si es constante, tratar como uint8 si el rango original lo permitía,
# o simplemente ponerla a 0 si es float.
if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
pixel_array = image.astype(np.uint8)
bitdepth = 8
else: # Caso flotante constante o fuera de rango uint8
pixel_array = np.zeros_like(image, dtype=np.uint16)
bitdepth = 16
else:
image -= min_val # Mover mínimo a cero
current_max = max_val - min_val
# Escalar a 16-bit para mayor precisión si no era uint8 originalmente
if image_array.dtype != np.uint8:
image *= 65535 / current_max
pixel_array = image.astype(np.uint16)
bitdepth = 16
else:
# Si era uint8, mantener el rango y tipo
# La resta del min ya la dejó en [0, current_max]
# Escalar a 255 si es necesario
image *= 255 / current_max
pixel_array = image.astype(np.uint8)
bitdepth = 8
# Codificar como PNG
output = io.BytesIO()
png.Writer(
width=pixel_array.shape[1],
height=pixel_array.shape[0],
greyscale=True,
bitdepth=bitdepth
).write(output, pixel_array.tolist())
png_bytes = output.getvalue()
# Crear tf.train.Example
example = tf.train.Example()
features = example.features.feature
features['image/encoded'].bytes_list.value.append(png_bytes)
features['image/format'].bytes_list.value.append(b'png')
return example
def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
"""Genera embedding final de imagen."""
if elixrc_infer is None or qformer_infer is None:
raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
try:
# 1. ELIXR-C
serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
print(f" Embedding ELIXR-C shape: {elixrc_embedding.shape}")
# 2. QFormer (Imagen)
qformer_input_img = {
'image_feature': elixrc_embedding.tolist(),
'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(), # Texto vacío
'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(), # Todo padding
}
qformer_output_img = qformer_infer(**qformer_input_img)
image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()
# Ajustar dimensiones si es necesario
if image_embedding.ndim > 2:
print(f" Ajustando dimensiones embedding imagen (original: {image_embedding.shape})")
image_embedding = np.mean(
image_embedding,
axis=tuple(range(1, image_embedding.ndim - 1))
)
if image_embedding.ndim == 1:
image_embedding = np.expand_dims(image_embedding, axis=0)
elif image_embedding.ndim == 1:
image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D
print(f" Embedding final imagen shape: {image_embedding.shape}")
if image_embedding.ndim != 2:
raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: {image_embedding.shape}")
return image_embedding
except Exception as e:
print(f"Error generando embedding de imagen: {e}")
traceback.print_exc()
raise # Re-lanzar la excepción para que Gradio la maneje
def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
"""Calcula similitudes y clasifica."""
if image_embedding is None: raise ValueError("Embedding de imagen es None.")
if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
if qformer_infer is None: raise ValueError("QFormer es None.")
detailed_results = {}
print("\n--- Calculando similitudes y clasificando ---")
for i in range(len(criteria_list_positive)):
positive_text = criteria_list_positive[i]
negative_text = criteria_list_negative[i]
criterion_name = positive_text # Usar prompt positivo como clave
print(f"Procesando criterio: \"{criterion_name}\"")
similarity_positive, similarity_negative, difference = None, None, None
classification_comp, classification_simp = "ERROR", "ERROR"
try:
# 1. Embedding Texto Positivo
tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
qformer_input_text_pos = {
'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), # Dummy
'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist(),
}
text_embedding_pos = qformer_infer(**qformer_input_text_pos)['contrastive_txt_emb'].numpy()
if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)
# 2. Embedding Texto Negativo
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
qformer_input_text_neg = {
'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), # Dummy
'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),
}
text_embedding_neg = qformer_infer(**qformer_input_text_neg)['contrastive_txt_emb'].numpy()
if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
# Verificar compatibilidad de dimensiones para similitud
if image_embedding.shape[1] != text_embedding_pos.shape[1]:
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
if image_embedding.shape[1] != text_embedding_neg.shape[1]:
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Neg ({text_embedding_neg.shape[1]})")
# 3. Calcular Similitudes
similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
print(f" Sim (+)={similarity_positive:.4f}, Sim (-)={similarity_negative:.4f}")
# 4. Clasificar
difference = similarity_positive - similarity_negative
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
print(f" Diff={difference:.4f} -> Comp: {classification_comp}, Simp: {classification_simp}")
except Exception as e:
print(f" ERROR procesando criterio '{criterion_name}': {e}")
traceback.print_exc()
# Mantener clasificaciones como "ERROR"
# Guardar resultados
detailed_results[criterion_name] = {
'positive_prompt': positive_text,
'negative_prompt': negative_text,
'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
'difference': float(difference) if difference is not None else None,
'classification_comparative': classification_comp,
'classification_simplified': classification_simp
}
return detailed_results
# --- Carga Global de Modelos ---
# Se ejecuta UNA VEZ al iniciar la aplicación Gradio/Space
print("--- Iniciando carga global de modelos ---")
start_time = time.time()
models_loaded = False
bert_preprocessor_global = None
elixrc_infer_global = None
qformer_infer_global = None
try:
# Verificar autenticación HF (útil si se usan modelos privados, aunque no es el caso aquí)
# if HfFolder.get_token() is None:
# print("Advertencia: No se encontró token de Hugging Face.")
# else:
# print("Token de Hugging Face encontrado.")
# Crear directorio si no existe
os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
local_dir_use_symlinks=False) # Evitar symlinks
print("Modelos descargados/verificados.")
# Cargar Preprocesador BERT desde TF Hub
print("Cargando Preprocesador BERT...")
# Usar handle explícito puede ser más robusto en algunos entornos
bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
print("Preprocesador BERT cargado.")
# Cargar ELIXR-C
print("Cargando ELIXR-C...")
elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
elixrc_model = tf.saved_model.load(elixrc_model_path)
elixrc_infer_global = elixrc_model.signatures['serving_default']
print("Modelo ELIXR-C cargado.")
# Cargar QFormer (ELIXR-B Text)
print("Cargando QFormer (ELIXR-B Text)...")
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
qformer_model = tf.saved_model.load(qformer_model_path)
qformer_infer_global = qformer_model.signatures['serving_default']
print("Modelo QFormer cargado.")
models_loaded = True
end_time = time.time()
print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
except Exception as e:
models_loaded = False
print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---")
print(e)
traceback.print_exc()
# Gradio se iniciará, pero la función de análisis fallará.
# --- Función Principal de Procesamiento para Gradio ---
def assess_quality(image_pil):
"""Función que Gradio llamará con la imagen de entrada."""
if not models_loaded:
raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
if image_pil is None:
# Devolver resultados vacíos o un mensaje de error si no hay imagen
return pd.DataFrame(), "N/A", None # Dataframe vacío, Label vacío, JSON vacío
print("\n--- Iniciando evaluación para nueva imagen ---")
start_process_time = time.time()
try:
# 1. Convertir PIL Image a NumPy array (escala de grises)
# Gradio con type="pil" ya la entrega como objeto PIL
img_np = np.array(image_pil.convert('L'))
print(f"Imagen convertida a NumPy. Shape: {img_np.shape}, Tipo: {img_np.dtype}")
# 2. Generar Embedding de Imagen
print("Generando embedding de imagen...")
image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
print("Embedding de imagen generado.")
# 3. Calcular Similitudes y Clasificar
print("Calculando similitudes y clasificando criterios...")
detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
print("Clasificación completada.")
# 4. Formatear Resultados para Gradio
output_data = []
passed_count = 0
total_count = 0
for criterion, details in detailed_results.items():
total_count += 1
sim_pos_str = f"{details['similarity_positive']:.4f}" if details['similarity_positive'] is not None else "N/A"
sim_neg_str = f"{details['similarity_negative']:.4f}" if details['similarity_negative'] is not None else "N/A"
diff_str = f"{details['difference']:.4f}" if details['difference'] is not None else "N/A"
assessment_comp = details['classification_comparative']
assessment_simp = details['classification_simplified']
output_data.append([
criterion,
sim_pos_str,
sim_neg_str,
diff_str,
assessment_comp,
assessment_simp
])
if assessment_comp == "PASS":
passed_count += 1
# Crear DataFrame
df_results = pd.DataFrame(output_data, columns=[
"Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"
])
# Calcular etiqueta de calidad general
overall_quality = "Error"
if total_count > 0:
pass_rate = passed_count / total_count
if pass_rate >= 0.85: overall_quality = "Excellent"
elif pass_rate >= 0.70: overall_quality = "Good"
elif pass_rate >= 0.50: overall_quality = "Fair"
else: overall_quality = "Poor"
quality_label = f"{overall_quality} ({passed_count}/{total_count} criteria passed)"
end_process_time = time.time()
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} segundos ---")
# Devolver DataFrame, Etiqueta y JSON
return df_results, quality_label, detailed_results
except Exception as e:
print(f"Error durante el procesamiento de la imagen en Gradio: {e}")
traceback.print_exc()
# Lanzar un gr.Error para mostrarlo en la UI de Gradio
raise gr.Error(f"Error procesando la imagen: {str(e)}")
# --- Definir la Interfaz Gradio ---
css = """
#quality-label label {
font-size: 1.1em;
font-weight: bold;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Chest X-ray Technical Quality Assessment
Upload a chest X-ray image (PNG, JPG, etc.) to evaluate its technical quality based on 7 standard criteria
using the ELIXR model family (comparative strategy: Positive vs Negative prompts).
**Note:** Model loading on startup might take a minute. Processing an image can take 10-30 seconds depending on server load.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Chest X-ray")
submit_button = gr.Button("Assess Quality", variant="primary")
# Añadir ejemplos si tienes imágenes de ejemplo
# Asegúrate de que la carpeta 'examples' exista y contenga las imágenes
# gr.Examples(
# examples=[os.path.join("examples", "sample_cxr.png")], # Lista de rutas a ejemplos
# inputs=input_image
# )
with gr.Column(scale=2):
output_label = gr.Label(label="Overall Quality Estimate", elem_id="quality-label")
output_dataframe = gr.DataFrame(
headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
label="Detailed Quality Assessment",
wrap=True,
height=350
)
output_json = gr.JSON(label="Raw Results (for debugging)")
gr.Markdown(
f"""
**Explanation:**
* **Criterion:** The quality aspect being evaluated (using the positive prompt text).
* **Sim (+):** Cosine similarity between the image and the *positive* text prompt (e.g., "optimal centering"). Higher is better.
* **Sim (-):** Cosine similarity between the image and the *negative* text prompt (e.g., "poorly centered"). Lower is better.
* **Difference:** Sim (+) - Sim (-). A large positive difference indicates the image is much closer to the positive description.
* **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}, otherwise FAIL. This is the main comparative assessment.
* **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}, otherwise FAIL. A simpler check based only on positive similarity.
"""
)
# Conectar el botón a la función de procesamiento
submit_button.click(
fn=assess_quality,
inputs=input_image,
outputs=[output_dataframe, output_label, output_json]
)
# --- Iniciar la Aplicación Gradio ---
# Al desplegar en Spaces, Gradio se encarga de esto automáticamente.
# Para ejecutar localmente: demo.launch()
# Para Spaces, es mejor dejar que HF maneje el launch.
# demo.launch(share=True) # Para obtener un link público temporal si corres localmente
if __name__ == "__main__":
# share=True solo si quieres un enlace público temporal desde local
# server_name="0.0.0.0" para permitir conexiones de red local
# server_port=7860 es el puerto estándar de HF Spaces
demo.launch(server_name="0.0.0.0", server_port=7860)