File size: 20,470 Bytes
4790918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b9d20
6ae44c8
6045f26
 
4790918
 
 
 
 
 
 
 
 
 
 
 
6ae44c8
 
 
 
 
 
4790918
6ae44c8
 
 
4790918
6ae44c8
 
7711f86
6ae44c8
 
4790918
6be1f83
4790918
6ae44c8
 
6be1f83
4790918
6be1f83
6ae44c8
 
 
4790918
6be1f83
6ae44c8
 
6be1f83
4790918
6ae44c8
6be1f83
 
 
 
4790918
6ae44c8
4790918
 
6be1f83
6ae44c8
6be1f83
6ae44c8
4790918
6ae44c8
 
4790918
6ae44c8
 
 
 
6be1f83
6ae44c8
 
6be1f83
6ae44c8
 
 
 
 
4790918
6ae44c8
6be1f83
6ae44c8
4790918
 
6ae44c8
 
54b9d20
6ae44c8
 
 
54b9d20
6ae44c8
 
 
 
54b9d20
6ae44c8
 
 
 
 
 
 
 
 
54b9d20
 
6ae44c8
6be1f83
54b9d20
 
6be1f83
6ae44c8
 
 
 
6be1f83
6ae44c8
6be1f83
 
 
6ae44c8
 
 
6be1f83
54b9d20
6ae44c8
 
54b9d20
6be1f83
 
6ae44c8
 
6be1f83
6ae44c8
 
 
 
 
 
 
 
 
 
 
 
 
54b9d20
6ae44c8
54b9d20
6ae44c8
 
 
54b9d20
6be1f83
6ae44c8
 
6be1f83
 
6ae44c8
54b9d20
6ae44c8
 
6be1f83
6ae44c8
 
 
 
 
54b9d20
6be1f83
6ae44c8
6be1f83
6ae44c8
6be1f83
6ae44c8
 
 
 
 
6be1f83
4790918
6ae44c8
4790918
6ae44c8
 
 
 
 
6be1f83
54b9d20
6ae44c8
 
 
 
 
54b9d20
6ae44c8
6be1f83
 
6ae44c8
4790918
6ae44c8
6be1f83
 
 
6ae44c8
 
54b9d20
6ae44c8
 
 
 
 
4790918
6ae44c8
 
6be1f83
 
 
6ae44c8
 
4790918
6be1f83
4790918
 
6ae44c8
6be1f83
4790918
 
 
54b9d20
6be1f83
6ae44c8
54b9d20
6ae44c8
 
 
 
 
6be1f83
6ae44c8
6be1f83
 
4790918
6be1f83
6ae44c8
4790918
 
6ae44c8
6be1f83
6ae44c8
6be1f83
 
 
54b9d20
6ae44c8
6be1f83
 
 
4790918
6be1f83
54b9d20
6ae44c8
6be1f83
 
 
4790918
 
 
 
6be1f83
 
6ae44c8
4790918
 
6ae44c8
 
 
 
54b9d20
6be1f83
6ae44c8
 
4790918
6be1f83
 
6ae44c8
 
4790918
 
6be1f83
6ae44c8
4790918
6ae44c8
 
6be1f83
6ae44c8
 
 
 
6be1f83
6ae44c8
 
 
 
6be1f83
6ae44c8
 
 
 
 
 
6be1f83
4790918
6ae44c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
6be1f83
 
 
 
4790918
6ae44c8
 
4790918
6ae44c8
 
 
 
 
54b9d20
6ae44c8
 
 
 
54b9d20
6ae44c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
6ae44c8
 
 
 
 
 
 
 
 
6be1f83
6ae44c8
 
 
 
a03be3c
 
6ae44c8
 
 
a03be3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be1f83
6ae44c8
 
 
 
4790918
6ae44c8
 
 
6be1f83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import gradio as gr
import os
import io
import png
import tensorflow as tf
import tensorflow_text as tf_text
import tensorflow_hub as tf_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import traceback
import time
import pandas as pd # Para formatear la salida en tabla

# --- Configuración ---
MODEL_REPO_ID = "google/cxr-foundation"
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
# Umbrales
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")

# --- Prompts ---
criteria_list_positive = [
    "optimal centering", "optimal inspiration", "optimal penetration",
    "complete field of view", "scapulae retracted", "sharp image", "artifact free"
]
criteria_list_negative = [
    "poorly centered", "poor inspiration", "non-diagnostic exposure",
    "cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
]

# --- Funciones Auxiliares (Integradas o adaptadas) ---
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
def preprocess_text(text):
    """Función interna del preprocesador BERT."""
    return bert_preprocessor_global(text)

def bert_tokenize(text, preprocessor):
    """Tokeniza texto usando el preprocesador BERT cargado globalmente."""
    if preprocessor is None:
       raise ValueError("BERT preprocessor no está cargado.")
    if not isinstance(text, str): text = str(text)

    # Ejecutar el preprocesador
    out = preprocessor(tf.constant([text.lower()]))

    # Extraer y procesar IDs y máscaras
    ids = out['input_word_ids'].numpy().astype(np.int32)
    masks = out['input_mask'].numpy().astype(np.float32)
    paddings = 1.0 - masks

    # Reemplazar token [SEP] (102) por 0 y marcar como padding
    end_token_idx = (ids == 102)
    ids[end_token_idx] = 0
    paddings[end_token_idx] = 1.0

    # Asegurar las dimensiones (B, T, S) -> (1, 1, 128)
    # El preprocesador puede devolver (1, 128), necesitamos (1, 1, 128)
    if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
    if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)

    # Verificar formas finales
    expected_shape = (1, 1, 128)
    if ids.shape != expected_shape:
         # Intentar reajustar si es necesario (puede pasar con algunas versiones)
         if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
         else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
    if paddings.shape != expected_shape:
         if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
         else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")

    return ids, paddings

def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
    """Crea tf.train.Example desde NumPy array (escala de grises)."""
    if image_array.ndim == 3 and image_array.shape[2] == 1:
        image_array = np.squeeze(image_array, axis=2) # Asegurar 2D
    elif image_array.ndim != 2:
        raise ValueError(f'Array debe ser 2-D (escala de grises). Dimensiones actuales: {image_array.ndim}')

    image = image_array.astype(np.float32)
    min_val = image.min()
    max_val = image.max()

    # Evitar división por cero si la imagen es constante
    if max_val <= min_val:
        # Si es constante, tratar como uint8 si el rango original lo permitía,
        # o simplemente ponerla a 0 si es float.
        if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
             pixel_array = image.astype(np.uint8)
             bitdepth = 8
        else: # Caso flotante constante o fuera de rango uint8
             pixel_array = np.zeros_like(image, dtype=np.uint16)
             bitdepth = 16
    else:
        image -= min_val # Mover mínimo a cero
        current_max = max_val - min_val
        # Escalar a 16-bit para mayor precisión si no era uint8 originalmente
        if image_array.dtype != np.uint8:
            image *= 65535 / current_max
            pixel_array = image.astype(np.uint16)
            bitdepth = 16
        else:
            # Si era uint8, mantener el rango y tipo
            # La resta del min ya la dejó en [0, current_max]
            # Escalar a 255 si es necesario
            image *= 255 / current_max
            pixel_array = image.astype(np.uint8)
            bitdepth = 8

    # Codificar como PNG
    output = io.BytesIO()
    png.Writer(
        width=pixel_array.shape[1],
        height=pixel_array.shape[0],
        greyscale=True,
        bitdepth=bitdepth
    ).write(output, pixel_array.tolist())
    png_bytes = output.getvalue()

    # Crear tf.train.Example
    example = tf.train.Example()
    features = example.features.feature
    features['image/encoded'].bytes_list.value.append(png_bytes)
    features['image/format'].bytes_list.value.append(b'png')
    return example

def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
    """Genera embedding final de imagen."""
    if elixrc_infer is None or qformer_infer is None:
        raise ValueError("Modelos ELIXR-C o QFormer no cargados.")

    try:
        # 1. ELIXR-C
        serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
        elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
        elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
        print(f"  Embedding ELIXR-C shape: {elixrc_embedding.shape}")

        # 2. QFormer (Imagen)
        qformer_input_img = {
            'image_feature': elixrc_embedding.tolist(),
            'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(), # Texto vacío
            'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(), # Todo padding
        }
        qformer_output_img = qformer_infer(**qformer_input_img)
        image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()

        # Ajustar dimensiones si es necesario
        if image_embedding.ndim > 2:
            print(f"  Ajustando dimensiones embedding imagen (original: {image_embedding.shape})")
            image_embedding = np.mean(
                image_embedding,
                axis=tuple(range(1, image_embedding.ndim - 1))
            )
            if image_embedding.ndim == 1:
                image_embedding = np.expand_dims(image_embedding, axis=0)
        elif image_embedding.ndim == 1:
             image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D

        print(f"  Embedding final imagen shape: {image_embedding.shape}")
        if image_embedding.ndim != 2:
            raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: {image_embedding.shape}")
        return image_embedding

    except Exception as e:
        print(f"Error generando embedding de imagen: {e}")
        traceback.print_exc()
        raise # Re-lanzar la excepción para que Gradio la maneje

def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
    """Calcula similitudes y clasifica."""
    if image_embedding is None: raise ValueError("Embedding de imagen es None.")
    if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
    if qformer_infer is None: raise ValueError("QFormer es None.")

    detailed_results = {}
    print("\n--- Calculando similitudes y clasificando ---")

    for i in range(len(criteria_list_positive)):
        positive_text = criteria_list_positive[i]
        negative_text = criteria_list_negative[i]
        criterion_name = positive_text # Usar prompt positivo como clave

        print(f"Procesando criterio: \"{criterion_name}\"")
        similarity_positive, similarity_negative, difference = None, None, None
        classification_comp, classification_simp = "ERROR", "ERROR"

        try:
            # 1. Embedding Texto Positivo
            tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
            qformer_input_text_pos = {
                'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), # Dummy
                'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist(),
            }
            text_embedding_pos = qformer_infer(**qformer_input_text_pos)['contrastive_txt_emb'].numpy()
            if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)

            # 2. Embedding Texto Negativo
            tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
            qformer_input_text_neg = {
                'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), # Dummy
                'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),
            }
            text_embedding_neg = qformer_infer(**qformer_input_text_neg)['contrastive_txt_emb'].numpy()
            if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)

            # Verificar compatibilidad de dimensiones para similitud
            if image_embedding.shape[1] != text_embedding_pos.shape[1]:
                 raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
            if image_embedding.shape[1] != text_embedding_neg.shape[1]:
                 raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Neg ({text_embedding_neg.shape[1]})")

            # 3. Calcular Similitudes
            similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
            similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
            print(f"  Sim (+)={similarity_positive:.4f}, Sim (-)={similarity_negative:.4f}")

            # 4. Clasificar
            difference = similarity_positive - similarity_negative
            classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
            classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
            print(f"  Diff={difference:.4f} -> Comp: {classification_comp}, Simp: {classification_simp}")

        except Exception as e:
            print(f"  ERROR procesando criterio '{criterion_name}': {e}")
            traceback.print_exc()
            # Mantener clasificaciones como "ERROR"

        # Guardar resultados
        detailed_results[criterion_name] = {
            'positive_prompt': positive_text,
            'negative_prompt': negative_text,
            'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
            'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
            'difference': float(difference) if difference is not None else None,
            'classification_comparative': classification_comp,
            'classification_simplified': classification_simp
        }
    return detailed_results

# --- Carga Global de Modelos ---
# Se ejecuta UNA VEZ al iniciar la aplicación Gradio/Space
print("--- Iniciando carga global de modelos ---")
start_time = time.time()
models_loaded = False
bert_preprocessor_global = None
elixrc_infer_global = None
qformer_infer_global = None

try:
    # Verificar autenticación HF (útil si se usan modelos privados, aunque no es el caso aquí)
    # if HfFolder.get_token() is None:
    #     print("Advertencia: No se encontró token de Hugging Face.")
    # else:
    #     print("Token de Hugging Face encontrado.")

    # Crear directorio si no existe
    os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
    print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
    snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
                      allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
                      local_dir_use_symlinks=False) # Evitar symlinks
    print("Modelos descargados/verificados.")

    # Cargar Preprocesador BERT desde TF Hub
    print("Cargando Preprocesador BERT...")
    # Usar handle explícito puede ser más robusto en algunos entornos
    bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
    bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
    print("Preprocesador BERT cargado.")

    # Cargar ELIXR-C
    print("Cargando ELIXR-C...")
    elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
    elixrc_model = tf.saved_model.load(elixrc_model_path)
    elixrc_infer_global = elixrc_model.signatures['serving_default']
    print("Modelo ELIXR-C cargado.")

    # Cargar QFormer (ELIXR-B Text)
    print("Cargando QFormer (ELIXR-B Text)...")
    qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
    qformer_model = tf.saved_model.load(qformer_model_path)
    qformer_infer_global = qformer_model.signatures['serving_default']
    print("Modelo QFormer cargado.")

    models_loaded = True
    end_time = time.time()
    print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")

except Exception as e:
    models_loaded = False
    print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---")
    print(e)
    traceback.print_exc()
    # Gradio se iniciará, pero la función de análisis fallará.

# --- Función Principal de Procesamiento para Gradio ---
def assess_quality(image_pil):
    """Función que Gradio llamará con la imagen de entrada."""
    if not models_loaded:
        raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
    if image_pil is None:
        # Devolver resultados vacíos o un mensaje de error si no hay imagen
         return pd.DataFrame(), "N/A", None # Dataframe vacío, Label vacío, JSON vacío

    print("\n--- Iniciando evaluación para nueva imagen ---")
    start_process_time = time.time()

    try:
        # 1. Convertir PIL Image a NumPy array (escala de grises)
        # Gradio con type="pil" ya la entrega como objeto PIL
        img_np = np.array(image_pil.convert('L'))
        print(f"Imagen convertida a NumPy. Shape: {img_np.shape}, Tipo: {img_np.dtype}")

        # 2. Generar Embedding de Imagen
        print("Generando embedding de imagen...")
        image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
        print("Embedding de imagen generado.")

        # 3. Calcular Similitudes y Clasificar
        print("Calculando similitudes y clasificando criterios...")
        detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
        print("Clasificación completada.")

        # 4. Formatear Resultados para Gradio
        output_data = []
        passed_count = 0
        total_count = 0
        for criterion, details in detailed_results.items():
            total_count += 1
            sim_pos_str = f"{details['similarity_positive']:.4f}" if details['similarity_positive'] is not None else "N/A"
            sim_neg_str = f"{details['similarity_negative']:.4f}" if details['similarity_negative'] is not None else "N/A"
            diff_str = f"{details['difference']:.4f}" if details['difference'] is not None else "N/A"
            assessment_comp = details['classification_comparative']
            assessment_simp = details['classification_simplified']
            output_data.append([
                criterion,
                sim_pos_str,
                sim_neg_str,
                diff_str,
                assessment_comp,
                assessment_simp
            ])
            if assessment_comp == "PASS":
                passed_count += 1

        # Crear DataFrame
        df_results = pd.DataFrame(output_data, columns=[
            "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"
        ])

        # Calcular etiqueta de calidad general
        overall_quality = "Error"
        if total_count > 0:
            pass_rate = passed_count / total_count
            if pass_rate >= 0.85: overall_quality = "Excellent"
            elif pass_rate >= 0.70: overall_quality = "Good"
            elif pass_rate >= 0.50: overall_quality = "Fair"
            else: overall_quality = "Poor"
        quality_label = f"{overall_quality} ({passed_count}/{total_count} criteria passed)"

        end_process_time = time.time()
        print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} segundos ---")

        # Devolver DataFrame, Etiqueta y JSON
        return df_results, quality_label, detailed_results

    except Exception as e:
        print(f"Error durante el procesamiento de la imagen en Gradio: {e}")
        traceback.print_exc()
        # Lanzar un gr.Error para mostrarlo en la UI de Gradio
        raise gr.Error(f"Error procesando la imagen: {str(e)}")


# --- Definir la Interfaz Gradio ---
css = """
#quality-label label {
    font-size: 1.1em;
    font-weight: bold;
}
"""
with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
        #  Chest X-ray Technical Quality Assessment
        Upload a chest X-ray image (PNG, JPG, etc.) to evaluate its technical quality based on 7 standard criteria
        using the ELIXR model family (comparative strategy: Positive vs Negative prompts).
        **Note:** Model loading on startup might take a minute. Processing an image can take 10-30 seconds depending on server load.
        """
    )
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="Upload Chest X-ray")
            submit_button = gr.Button("Assess Quality", variant="primary")
            # Añadir ejemplos si tienes imágenes de ejemplo
            # Asegúrate de que la carpeta 'examples' exista y contenga las imágenes
            # gr.Examples(
            #     examples=[os.path.join("examples", "sample_cxr.png")], # Lista de rutas a ejemplos
            #     inputs=input_image
            # )
        with gr.Column(scale=2):
            output_label = gr.Label(label="Overall Quality Estimate", elem_id="quality-label")
            output_dataframe = gr.DataFrame(
                headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
                label="Detailed Quality Assessment",
                wrap=True,
                height=350
                )
            output_json = gr.JSON(label="Raw Results (for debugging)")


    gr.Markdown(
        f"""
        **Explanation:**
        *   **Criterion:** The quality aspect being evaluated (using the positive prompt text).
        *   **Sim (+):** Cosine similarity between the image and the *positive* text prompt (e.g., "optimal centering"). Higher is better.
        *   **Sim (-):** Cosine similarity between the image and the *negative* text prompt (e.g., "poorly centered"). Lower is better.
        *   **Difference:** Sim (+) - Sim (-). A large positive difference indicates the image is much closer to the positive description.
        *   **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}, otherwise FAIL. This is the main comparative assessment.
        *   **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}, otherwise FAIL. A simpler check based only on positive similarity.
        """
    )

    # Conectar el botón a la función de procesamiento
    submit_button.click(
        fn=assess_quality,
        inputs=input_image,
        outputs=[output_dataframe, output_label, output_json]
    )

# --- Iniciar la Aplicación Gradio ---
# Al desplegar en Spaces, Gradio se encarga de esto automáticamente.
# Para ejecutar localmente: demo.launch()
# Para Spaces, es mejor dejar que HF maneje el launch.
# demo.launch(share=True) # Para obtener un link público temporal si corres localmente
if __name__ == "__main__":
     # share=True solo si quieres un enlace público temporal desde local
     # server_name="0.0.0.0" para permitir conexiones de red local
     # server_port=7860 es el puerto estándar de HF Spaces
     demo.launch(server_name="0.0.0.0", server_port=7860)