fecia commited on
Commit
6ae44c8
·
verified ·
1 Parent(s): 7552a7a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +262 -169
app.py CHANGED
@@ -16,6 +16,7 @@ import pandas as pd # Para formatear la salida en tabla
16
  # --- Configuración ---
17
  MODEL_REPO_ID = "google/cxr-foundation"
18
  MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
 
19
  SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
20
  POSITIVE_SIMILARITY_THRESHOLD = 0.1
21
  print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
@@ -30,151 +31,255 @@ criteria_list_negative = [
30
  "cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
31
  ]
32
 
33
- # --- Funciones Auxiliares ---
 
 
 
 
 
34
  def bert_tokenize(text, preprocessor):
35
- if preprocessor is None: raise ValueError("BERT preprocessor no está cargado.")
 
 
36
  if not isinstance(text, str): text = str(text)
 
 
37
  out = preprocessor(tf.constant([text.lower()]))
 
 
38
  ids = out['input_word_ids'].numpy().astype(np.int32)
39
  masks = out['input_mask'].numpy().astype(np.float32)
40
  paddings = 1.0 - masks
 
 
41
  end_token_idx = (ids == 102)
42
  ids[end_token_idx] = 0
43
  paddings[end_token_idx] = 1.0
 
 
 
44
  if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
45
  if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
 
 
46
  expected_shape = (1, 1, 128)
47
  if ids.shape != expected_shape:
 
48
  if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
49
  else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
50
  if paddings.shape != expected_shape:
51
  if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
52
  else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
 
53
  return ids, paddings
54
 
55
  def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
 
56
  if image_array.ndim == 3 and image_array.shape[2] == 1:
57
- image_array = np.squeeze(image_array, axis=2)
58
  elif image_array.ndim != 2:
59
- raise ValueError(f'Array debe ser 2-D. Dimensiones: {image_array.ndim}')
 
60
  image = image_array.astype(np.float32)
61
- min_val, max_val = image.min(), image.max()
 
 
 
62
  if max_val <= min_val:
 
 
63
  if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
64
- pixel_array = image.astype(np.uint8); bitdepth = 8
65
- else:
66
- pixel_array = np.zeros_like(image, dtype=np.uint16); bitdepth = 16
 
 
67
  else:
68
- image -= min_val
69
  current_max = max_val - min_val
 
70
  if image_array.dtype != np.uint8:
71
  image *= 65535 / current_max
72
- pixel_array = image.astype(np.uint16); bitdepth = 16
 
73
  else:
 
 
 
74
  image *= 255 / current_max
75
- pixel_array = image.astype(np.uint8); bitdepth = 8
 
 
 
76
  output = io.BytesIO()
77
- png.Writer(width=pixel_array.shape[1], height=pixel_array.shape[0], greyscale=True, bitdepth=bitdepth).write(output, pixel_array.tolist())
 
 
 
 
 
 
 
 
78
  example = tf.train.Example()
79
  features = example.features.feature
80
- features['image/encoded'].bytes_list.value.append(output.getvalue())
81
  features['image/format'].bytes_list.value.append(b'png')
82
  return example
83
 
84
  def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
85
- if elixrc_infer is None or qformer_infer is None: raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
 
 
 
86
  try:
 
87
  serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
88
  elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
89
  elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
 
 
 
90
  qformer_input_img = {
91
  'image_feature': elixrc_embedding.tolist(),
92
- 'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(),
93
- 'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(),
94
  }
95
  qformer_output_img = qformer_infer(**qformer_input_img)
96
  image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()
 
 
97
  if image_embedding.ndim > 2:
98
- image_embedding = np.mean(image_embedding, axis=tuple(range(1, image_embedding.ndim - 1)))
99
- if image_embedding.ndim == 1: image_embedding = np.expand_dims(image_embedding, axis=0)
100
- if image_embedding.ndim != 2: raise ValueError(f"Embedding final no tiene 2 dims: {image_embedding.shape}")
 
 
 
 
 
 
 
 
 
 
101
  return image_embedding
 
102
  except Exception as e:
103
- print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise
 
 
104
 
105
  def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
106
- if image_embedding is None: raise ValueError("Embedding imagen es None.")
 
107
  if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
108
  if qformer_infer is None: raise ValueError("QFormer es None.")
 
109
  detailed_results = {}
110
- print("\n--- Calculando similitudes ---")
 
111
  for i in range(len(criteria_list_positive)):
112
- positive_text, negative_text = criteria_list_positive[i], criteria_list_negative[i]
113
- criterion_name = positive_text
114
- print(f"Procesando: \"{criterion_name}\"")
 
 
115
  similarity_positive, similarity_negative, difference = None, None, None
116
  classification_comp, classification_simp = "ERROR", "ERROR"
 
117
  try:
 
118
  tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
119
- qformer_input_pos = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist()}
120
- text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy()
 
 
 
121
  if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)
122
 
 
123
  tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
124
- qformer_input_neg = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist()}
125
- text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_emb'].numpy()
 
 
 
126
  if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
127
 
128
- if image_embedding.shape[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})")
129
- if image_embedding.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Neg ({text_embedding_neg.shape[1]})")
 
 
 
130
 
 
131
  similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
132
  similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
 
133
 
 
134
  difference = similarity_positive - similarity_negative
135
  classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
136
  classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
137
- print(f" Sim(+)={similarity_positive:.4f}, Sim(-)={similarity_negative:.4f}, Diff={difference:.4f} -> Comp:{classification_comp}, Simp:{classification_simp}")
 
138
  except Exception as e:
139
- print(f" ERROR criterio '{criterion_name}': {e}"); traceback.print_exc()
 
 
 
 
140
  detailed_results[criterion_name] = {
141
- 'positive_prompt': positive_text, 'negative_prompt': negative_text,
 
142
  'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
143
  'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
144
  'difference': float(difference) if difference is not None else None,
145
- 'classification_comparative': classification_comp, 'classification_simplified': classification_simp
 
146
  }
147
  return detailed_results
148
 
149
  # --- Carga Global de Modelos ---
 
150
  print("--- Iniciando carga global de modelos ---")
151
  start_time = time.time()
152
  models_loaded = False
153
  bert_preprocessor_global = None
154
  elixrc_infer_global = None
155
  qformer_infer_global = None
 
156
  try:
157
- hf_token = os.environ.get("HF_TOKEN") # Leer token desde secretos del Space
158
- if hf_token: print("Usando HF_TOKEN para autenticación.")
 
 
 
159
 
 
160
  os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
161
  print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
162
  snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
163
  allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
164
- local_dir_use_symlinks=False, token=hf_token) # Pasar token
165
  print("Modelos descargados/verificados.")
166
 
 
167
  print("Cargando Preprocesador BERT...")
 
168
  bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
169
  bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
170
  print("Preprocesador BERT cargado.")
171
 
 
172
  print("Cargando ELIXR-C...")
173
  elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
174
  elixrc_model = tf.saved_model.load(elixrc_model_path)
175
  elixrc_infer_global = elixrc_model.signatures['serving_default']
176
  print("Modelo ELIXR-C cargado.")
177
 
 
178
  print("Cargando QFormer (ELIXR-B Text)...")
179
  qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
180
  qformer_model = tf.saved_model.load(qformer_model_path)
@@ -184,167 +289,155 @@ try:
184
  models_loaded = True
185
  end_time = time.time()
186
  print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
 
187
  except Exception as e:
188
  models_loaded = False
189
- print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---"); print(e); traceback.print_exc()
 
 
 
190
 
191
  # --- Función Principal de Procesamiento para Gradio ---
192
- def assess_quality_and_update_ui(image_pil):
193
- """Procesa la imagen y devuelve actualizaciones para la UI."""
194
  if not models_loaded:
195
  raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
196
  if image_pil is None:
197
- return (
198
- gr.update(visible=True), # Muestra bienvenida
199
- gr.update(visible=False), # Oculta resultados
200
- None, # Borra imagen de salida
201
- gr.update(value="N/A"), # Borra etiqueta
202
- pd.DataFrame(), # Borra dataframe
203
- None # Borra JSON
204
- )
205
 
206
  print("\n--- Iniciando evaluación para nueva imagen ---")
207
  start_process_time = time.time()
 
208
  try:
 
 
209
  img_np = np.array(image_pil.convert('L'))
 
 
 
 
210
  image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
 
 
 
 
211
  detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
212
- output_data, passed_count, total_count = [], 0, 0
 
 
 
 
 
213
  for criterion, details in detailed_results.items():
214
  total_count += 1
215
- sim_pos = details['similarity_positive']
216
- sim_neg = details['similarity_negative']
217
- diff = details['difference']
218
- comp = details['classification_comparative']
219
- simp = details['classification_simplified']
220
- output_data.append([ criterion, f"{sim_pos:.4f}" if sim_pos else "N/A",
221
- f"{sim_neg:.4f}" if sim_neg else "N/A", f"{diff:.4f}" if diff else "N/A", comp, simp ])
222
- if comp == "PASS": passed_count += 1
223
- df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ])
224
- overall_quality = "Error"; pass_rate = 0
 
 
 
 
 
 
 
 
 
 
 
 
 
225
  if total_count > 0:
226
  pass_rate = passed_count / total_count
227
  if pass_rate >= 0.85: overall_quality = "Excellent"
228
  elif pass_rate >= 0.70: overall_quality = "Good"
229
  elif pass_rate >= 0.50: overall_quality = "Fair"
230
  else: overall_quality = "Poor"
231
- quality_label = f"{overall_quality} ({passed_count}/{total_count} passed)"
 
232
  end_process_time = time.time()
233
- print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg ---")
234
- return (
235
- gr.update(visible=False), # Oculta bienvenida
236
- gr.update(visible=True), # Muestra resultados
237
- image_pil, # Muestra imagen procesada
238
- gr.update(value=quality_label), # Actualiza etiqueta
239
- df_results, # Actualiza dataframe
240
- detailed_results # Actualiza JSON
241
- )
242
  except Exception as e:
243
- print(f"Error durante procesamiento Gradio: {e}"); traceback.print_exc()
244
- raise gr.Error(f"Error procesando imagen: {str(e)}")
245
-
246
- # --- Función para Resetear la UI ---
247
- def reset_ui():
248
- print("Reseteando UI...")
249
- return (
250
- gr.update(visible=True), # Muestra bienvenida
251
- gr.update(visible=False), # Oculta resultados
252
- None, # Borra imagen de entrada
253
- None, # Borra imagen de salida
254
- gr.update(value="N/A"), # Borra etiqueta
255
- pd.DataFrame(), # Borra dataframe
256
- None # Borra JSON
257
- )
258
 
259
- # --- Definir Tema Oscuro Personalizado (CORREGIDO) ---
260
- dark_theme = gr.themes.Default(
261
- primary_hue=gr.themes.colors.blue,
262
- secondary_hue=gr.themes.colors.blue,
263
- neutral_hue=gr.themes.colors.gray,
264
- font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
265
- font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "Consolas", "monospace"],
266
- ).set(
267
- # Fondos
268
- body_background_fill="#111827",
269
- background_fill_primary="#1f2937",
270
- background_fill_secondary="#374151",
271
- block_background_fill="#1f2937",
272
- # Texto
273
- body_text_color="#d1d5db",
274
- # text_color_subdued="#9ca3af", # <-- Línea eliminada que causaba el error
275
- block_label_text_color="#d1d5db",
276
- block_title_text_color="#ffffff",
277
- # Bordes
278
- border_color_accent="#374151",
279
- border_color_primary="#4b5563",
280
- # Botones y Elementos Interactivos
281
- button_primary_background_fill="*primary_600",
282
- button_primary_text_color="#ffffff",
283
- button_secondary_background_fill="*neutral_700",
284
- button_secondary_text_color="#ffffff",
285
- input_background_fill="#374151",
286
- input_border_color="#4b5563",
287
- # Sombras y Radios
288
- shadow_drop="rgba(0,0,0,0.2) 0px 2px 4px",
289
- block_shadow="rgba(0,0,0,0.2) 0px 2px 5px",
290
- )
291
-
292
- # --- Definir la Interfaz Gradio con Bloques y Tema ---
293
- with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
294
- # --- Cabecera ---
295
  with gr.Row():
296
- gr.Markdown(
297
- """
298
- # <span style="color: #e5e7eb;">CXR Quality Assessment</span>
299
- <p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p>
300
- """,
301
- elem_id="app-header"
302
- )
303
-
304
- # --- Contenido Principal (Dos Columnas) ---
305
- with gr.Row(equal_height=False):
306
-
307
- # --- Columna Izquierda (Carga) ---
308
- with gr.Column(scale=1, min_width=350):
309
- gr.Markdown("### 1. Upload Image", elem_id="upload-title")
310
- input_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300)
311
- with gr.Row():
312
- analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2)
313
- reset_btn = gr.Button("Reset", variant="secondary", scale=1)
314
- # gr.Examples( examples=[os.path.join("examples", "sample_cxr.png")], inputs=input_image, label="Example CXR" )
315
- gr.Markdown( "<p style='color:#9ca3af; font-size:0.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>" )
316
-
317
- # --- Columna Derecha (Bienvenida / Resultados) ---
318
  with gr.Column(scale=2):
319
- with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
320
- gr.Markdown( """ ### Welcome! Upload a chest X-ray image (PNG, JPG, etc.) on the left panel and click "Analyze Image". The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family. The results will appear here once the analysis is complete. """, elem_id="welcome-text" )
321
- with gr.Column(visible=False, elem_id="results-section") as results_block:
322
- gr.Markdown("### 2. Quality Assessment Results", elem_id="results-title")
323
- with gr.Row():
324
- with gr.Column(scale=1): output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
325
- with gr.Column(scale=1):
326
- gr.Markdown("#### Summary", elem_id="summary-title")
327
- output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")
328
- gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title")
329
- output_dataframe = gr.DataFrame( headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"], label=None, wrap=True, max_rows=10, overflow_row_behaviour="show_ends", interactive=False, elem_id="results-dataframe" )
330
- with gr.Accordion("Raw JSON Output (for debugging)", open=False): output_json = gr.JSON(label=None)
331
- gr.Markdown( f""" #### Technical Notes * **Criterion:** Quality aspect evaluated. * **Sim (+/-):** Cosine similarity with positive/negative prompt. * **Difference:** Sim (+) - Sim (-). * **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}. (Main Result) * **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}. """, elem_id="notes-text" )
332
-
333
- # --- Pie de página ---
334
- gr.Markdown( """ ---- <p style='text-align:center; color:#9ca3af; font-size:0.8em;'> CXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio </p> """, elem_id="app-footer" )
335
-
336
- # --- Conexiones de Eventos ---
337
- analyze_btn.click(
338
- fn=assess_quality_and_update_ui,
339
- inputs=[input_image],
340
- outputs=[ welcome_block, results_block, output_image, output_label, output_dataframe, output_json ]
341
  )
342
- reset_btn.click(
343
- fn=reset_ui,
344
- inputs=None,
345
- outputs=[ welcome_block, results_block, input_image, output_image, output_label, output_dataframe, output_json ]
 
 
346
  )
347
 
348
  # --- Iniciar la Aplicación Gradio ---
 
 
 
 
349
  if __name__ == "__main__":
 
 
 
350
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
16
  # --- Configuración ---
17
  MODEL_REPO_ID = "google/cxr-foundation"
18
  MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
19
+ # Umbrales
20
  SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
21
  POSITIVE_SIMILARITY_THRESHOLD = 0.1
22
  print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
 
31
  "cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
32
  ]
33
 
34
+ # --- Funciones Auxiliares (Integradas o adaptadas) ---
35
+ # @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
36
+ def preprocess_text(text):
37
+ """Función interna del preprocesador BERT."""
38
+ return bert_preprocessor_global(text)
39
+
40
  def bert_tokenize(text, preprocessor):
41
+ """Tokeniza texto usando el preprocesador BERT cargado globalmente."""
42
+ if preprocessor is None:
43
+ raise ValueError("BERT preprocessor no está cargado.")
44
  if not isinstance(text, str): text = str(text)
45
+
46
+ # Ejecutar el preprocesador
47
  out = preprocessor(tf.constant([text.lower()]))
48
+
49
+ # Extraer y procesar IDs y máscaras
50
  ids = out['input_word_ids'].numpy().astype(np.int32)
51
  masks = out['input_mask'].numpy().astype(np.float32)
52
  paddings = 1.0 - masks
53
+
54
+ # Reemplazar token [SEP] (102) por 0 y marcar como padding
55
  end_token_idx = (ids == 102)
56
  ids[end_token_idx] = 0
57
  paddings[end_token_idx] = 1.0
58
+
59
+ # Asegurar las dimensiones (B, T, S) -> (1, 1, 128)
60
+ # El preprocesador puede devolver (1, 128), necesitamos (1, 1, 128)
61
  if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
62
  if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
63
+
64
+ # Verificar formas finales
65
  expected_shape = (1, 1, 128)
66
  if ids.shape != expected_shape:
67
+ # Intentar reajustar si es necesario (puede pasar con algunas versiones)
68
  if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
69
  else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
70
  if paddings.shape != expected_shape:
71
  if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
72
  else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
73
+
74
  return ids, paddings
75
 
76
  def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
77
+ """Crea tf.train.Example desde NumPy array (escala de grises)."""
78
  if image_array.ndim == 3 and image_array.shape[2] == 1:
79
+ image_array = np.squeeze(image_array, axis=2) # Asegurar 2D
80
  elif image_array.ndim != 2:
81
+ raise ValueError(f'Array debe ser 2-D (escala de grises). Dimensiones actuales: {image_array.ndim}')
82
+
83
  image = image_array.astype(np.float32)
84
+ min_val = image.min()
85
+ max_val = image.max()
86
+
87
+ # Evitar división por cero si la imagen es constante
88
  if max_val <= min_val:
89
+ # Si es constante, tratar como uint8 si el rango original lo permitía,
90
+ # o simplemente ponerla a 0 si es float.
91
  if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
92
+ pixel_array = image.astype(np.uint8)
93
+ bitdepth = 8
94
+ else: # Caso flotante constante o fuera de rango uint8
95
+ pixel_array = np.zeros_like(image, dtype=np.uint16)
96
+ bitdepth = 16
97
  else:
98
+ image -= min_val # Mover mínimo a cero
99
  current_max = max_val - min_val
100
+ # Escalar a 16-bit para mayor precisión si no era uint8 originalmente
101
  if image_array.dtype != np.uint8:
102
  image *= 65535 / current_max
103
+ pixel_array = image.astype(np.uint16)
104
+ bitdepth = 16
105
  else:
106
+ # Si era uint8, mantener el rango y tipo
107
+ # La resta del min ya la dejó en [0, current_max]
108
+ # Escalar a 255 si es necesario
109
  image *= 255 / current_max
110
+ pixel_array = image.astype(np.uint8)
111
+ bitdepth = 8
112
+
113
+ # Codificar como PNG
114
  output = io.BytesIO()
115
+ png.Writer(
116
+ width=pixel_array.shape[1],
117
+ height=pixel_array.shape[0],
118
+ greyscale=True,
119
+ bitdepth=bitdepth
120
+ ).write(output, pixel_array.tolist())
121
+ png_bytes = output.getvalue()
122
+
123
+ # Crear tf.train.Example
124
  example = tf.train.Example()
125
  features = example.features.feature
126
+ features['image/encoded'].bytes_list.value.append(png_bytes)
127
  features['image/format'].bytes_list.value.append(b'png')
128
  return example
129
 
130
  def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
131
+ """Genera embedding final de imagen."""
132
+ if elixrc_infer is None or qformer_infer is None:
133
+ raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
134
+
135
  try:
136
+ # 1. ELIXR-C
137
  serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
138
  elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
139
  elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
140
+ print(f" Embedding ELIXR-C shape: {elixrc_embedding.shape}")
141
+
142
+ # 2. QFormer (Imagen)
143
  qformer_input_img = {
144
  'image_feature': elixrc_embedding.tolist(),
145
+ 'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(), # Texto vacío
146
+ 'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(), # Todo padding
147
  }
148
  qformer_output_img = qformer_infer(**qformer_input_img)
149
  image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()
150
+
151
+ # Ajustar dimensiones si es necesario
152
  if image_embedding.ndim > 2:
153
+ print(f" Ajustando dimensiones embedding imagen (original: {image_embedding.shape})")
154
+ image_embedding = np.mean(
155
+ image_embedding,
156
+ axis=tuple(range(1, image_embedding.ndim - 1))
157
+ )
158
+ if image_embedding.ndim == 1:
159
+ image_embedding = np.expand_dims(image_embedding, axis=0)
160
+ elif image_embedding.ndim == 1:
161
+ image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D
162
+
163
+ print(f" Embedding final imagen shape: {image_embedding.shape}")
164
+ if image_embedding.ndim != 2:
165
+ raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: {image_embedding.shape}")
166
  return image_embedding
167
+
168
  except Exception as e:
169
+ print(f"Error generando embedding de imagen: {e}")
170
+ traceback.print_exc()
171
+ raise # Re-lanzar la excepción para que Gradio la maneje
172
 
173
  def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
174
+ """Calcula similitudes y clasifica."""
175
+ if image_embedding is None: raise ValueError("Embedding de imagen es None.")
176
  if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
177
  if qformer_infer is None: raise ValueError("QFormer es None.")
178
+
179
  detailed_results = {}
180
+ print("\n--- Calculando similitudes y clasificando ---")
181
+
182
  for i in range(len(criteria_list_positive)):
183
+ positive_text = criteria_list_positive[i]
184
+ negative_text = criteria_list_negative[i]
185
+ criterion_name = positive_text # Usar prompt positivo como clave
186
+
187
+ print(f"Procesando criterio: \"{criterion_name}\"")
188
  similarity_positive, similarity_negative, difference = None, None, None
189
  classification_comp, classification_simp = "ERROR", "ERROR"
190
+
191
  try:
192
+ # 1. Embedding Texto Positivo
193
  tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
194
+ qformer_input_text_pos = {
195
+ 'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), # Dummy
196
+ 'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist(),
197
+ }
198
+ text_embedding_pos = qformer_infer(**qformer_input_text_pos)['contrastive_txt_emb'].numpy()
199
  if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)
200
 
201
+ # 2. Embedding Texto Negativo
202
  tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
203
+ qformer_input_text_neg = {
204
+ 'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), # Dummy
205
+ 'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),
206
+ }
207
+ text_embedding_neg = qformer_infer(**qformer_input_text_neg)['contrastive_txt_emb'].numpy()
208
  if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
209
 
210
+ # Verificar compatibilidad de dimensiones para similitud
211
+ if image_embedding.shape[1] != text_embedding_pos.shape[1]:
212
+ raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
213
+ if image_embedding.shape[1] != text_embedding_neg.shape[1]:
214
+ raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1]}) vs Texto Neg ({text_embedding_neg.shape[1]})")
215
 
216
+ # 3. Calcular Similitudes
217
  similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
218
  similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
219
+ print(f" Sim (+)={similarity_positive:.4f}, Sim (-)={similarity_negative:.4f}")
220
 
221
+ # 4. Clasificar
222
  difference = similarity_positive - similarity_negative
223
  classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
224
  classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
225
+ print(f" Diff={difference:.4f} -> Comp: {classification_comp}, Simp: {classification_simp}")
226
+
227
  except Exception as e:
228
+ print(f" ERROR procesando criterio '{criterion_name}': {e}")
229
+ traceback.print_exc()
230
+ # Mantener clasificaciones como "ERROR"
231
+
232
+ # Guardar resultados
233
  detailed_results[criterion_name] = {
234
+ 'positive_prompt': positive_text,
235
+ 'negative_prompt': negative_text,
236
  'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
237
  'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
238
  'difference': float(difference) if difference is not None else None,
239
+ 'classification_comparative': classification_comp,
240
+ 'classification_simplified': classification_simp
241
  }
242
  return detailed_results
243
 
244
  # --- Carga Global de Modelos ---
245
+ # Se ejecuta UNA VEZ al iniciar la aplicación Gradio/Space
246
  print("--- Iniciando carga global de modelos ---")
247
  start_time = time.time()
248
  models_loaded = False
249
  bert_preprocessor_global = None
250
  elixrc_infer_global = None
251
  qformer_infer_global = None
252
+
253
  try:
254
+ # Verificar autenticación HF (útil si se usan modelos privados, aunque no es el caso aquí)
255
+ # if HfFolder.get_token() is None:
256
+ # print("Advertencia: No se encontró token de Hugging Face.")
257
+ # else:
258
+ # print("Token de Hugging Face encontrado.")
259
 
260
+ # Crear directorio si no existe
261
  os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
262
  print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
263
  snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
264
  allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
265
+ local_dir_use_symlinks=False) # Evitar symlinks
266
  print("Modelos descargados/verificados.")
267
 
268
+ # Cargar Preprocesador BERT desde TF Hub
269
  print("Cargando Preprocesador BERT...")
270
+ # Usar handle explícito puede ser más robusto en algunos entornos
271
  bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
272
  bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
273
  print("Preprocesador BERT cargado.")
274
 
275
+ # Cargar ELIXR-C
276
  print("Cargando ELIXR-C...")
277
  elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
278
  elixrc_model = tf.saved_model.load(elixrc_model_path)
279
  elixrc_infer_global = elixrc_model.signatures['serving_default']
280
  print("Modelo ELIXR-C cargado.")
281
 
282
+ # Cargar QFormer (ELIXR-B Text)
283
  print("Cargando QFormer (ELIXR-B Text)...")
284
  qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
285
  qformer_model = tf.saved_model.load(qformer_model_path)
 
289
  models_loaded = True
290
  end_time = time.time()
291
  print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
292
+
293
  except Exception as e:
294
  models_loaded = False
295
+ print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---")
296
+ print(e)
297
+ traceback.print_exc()
298
+ # Gradio se iniciará, pero la función de análisis fallará.
299
 
300
  # --- Función Principal de Procesamiento para Gradio ---
301
+ def assess_quality(image_pil):
302
+ """Función que Gradio llamará con la imagen de entrada."""
303
  if not models_loaded:
304
  raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
305
  if image_pil is None:
306
+ # Devolver resultados vacíos o un mensaje de error si no hay imagen
307
+ return pd.DataFrame(), "N/A", None # Dataframe vacío, Label vacío, JSON vacío
 
 
 
 
 
 
308
 
309
  print("\n--- Iniciando evaluación para nueva imagen ---")
310
  start_process_time = time.time()
311
+
312
  try:
313
+ # 1. Convertir PIL Image a NumPy array (escala de grises)
314
+ # Gradio con type="pil" ya la entrega como objeto PIL
315
  img_np = np.array(image_pil.convert('L'))
316
+ print(f"Imagen convertida a NumPy. Shape: {img_np.shape}, Tipo: {img_np.dtype}")
317
+
318
+ # 2. Generar Embedding de Imagen
319
+ print("Generando embedding de imagen...")
320
  image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
321
+ print("Embedding de imagen generado.")
322
+
323
+ # 3. Calcular Similitudes y Clasificar
324
+ print("Calculando similitudes y clasificando criterios...")
325
  detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
326
+ print("Clasificación completada.")
327
+
328
+ # 4. Formatear Resultados para Gradio
329
+ output_data = []
330
+ passed_count = 0
331
+ total_count = 0
332
  for criterion, details in detailed_results.items():
333
  total_count += 1
334
+ sim_pos_str = f"{details['similarity_positive']:.4f}" if details['similarity_positive'] is not None else "N/A"
335
+ sim_neg_str = f"{details['similarity_negative']:.4f}" if details['similarity_negative'] is not None else "N/A"
336
+ diff_str = f"{details['difference']:.4f}" if details['difference'] is not None else "N/A"
337
+ assessment_comp = details['classification_comparative']
338
+ assessment_simp = details['classification_simplified']
339
+ output_data.append([
340
+ criterion,
341
+ sim_pos_str,
342
+ sim_neg_str,
343
+ diff_str,
344
+ assessment_comp,
345
+ assessment_simp
346
+ ])
347
+ if assessment_comp == "PASS":
348
+ passed_count += 1
349
+
350
+ # Crear DataFrame
351
+ df_results = pd.DataFrame(output_data, columns=[
352
+ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"
353
+ ])
354
+
355
+ # Calcular etiqueta de calidad general
356
+ overall_quality = "Error"
357
  if total_count > 0:
358
  pass_rate = passed_count / total_count
359
  if pass_rate >= 0.85: overall_quality = "Excellent"
360
  elif pass_rate >= 0.70: overall_quality = "Good"
361
  elif pass_rate >= 0.50: overall_quality = "Fair"
362
  else: overall_quality = "Poor"
363
+ quality_label = f"{overall_quality} ({passed_count}/{total_count} criteria passed)"
364
+
365
  end_process_time = time.time()
366
+ print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} segundos ---")
367
+
368
+ # Devolver DataFrame, Etiqueta y JSON
369
+ return df_results, quality_label, detailed_results
370
+
 
 
 
 
371
  except Exception as e:
372
+ print(f"Error durante el procesamiento de la imagen en Gradio: {e}")
373
+ traceback.print_exc()
374
+ # Lanzar un gr.Error para mostrarlo en la UI de Gradio
375
+ raise gr.Error(f"Error procesando la imagen: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
376
 
377
+
378
+ # --- Definir la Interfaz Gradio ---
379
+ css = """
380
+ #quality-label label {
381
+ font-size: 1.1em;
382
+ font-weight: bold;
383
+ }
384
+ """
385
+ with gr.Blocks(css=css) as demo:
386
+ gr.Markdown(
387
+ """
388
+ # Chest X-ray Technical Quality Assessment
389
+ Upload a chest X-ray image (PNG, JPG, etc.) to evaluate its technical quality based on 7 standard criteria
390
+ using the ELIXR model family (comparative strategy: Positive vs Negative prompts).
391
+ **Note:** Model loading on startup might take a minute. Processing an image can take 10-30 seconds depending on server load.
392
+ """
393
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
  with gr.Row():
395
+ with gr.Column(scale=1):
396
+ input_image = gr.Image(type="pil", label="Upload Chest X-ray")
397
+ submit_button = gr.Button("Assess Quality", variant="primary")
398
+ # Añadir ejemplos si tienes imágenes de ejemplo
399
+ # Asegúrate de que la carpeta 'examples' exista y contenga las imágenes
400
+ # gr.Examples(
401
+ # examples=[os.path.join("examples", "sample_cxr.png")], # Lista de rutas a ejemplos
402
+ # inputs=input_image
403
+ # )
 
 
 
 
 
 
 
 
 
 
 
 
 
404
  with gr.Column(scale=2):
405
+ output_label = gr.Label(label="Overall Quality Estimate", elem_id="quality-label")
406
+ output_dataframe = gr.DataFrame(
407
+ headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
408
+ label="Detailed Quality Assessment",
409
+ wrap=True,
410
+ height=350
411
+ )
412
+ output_json = gr.JSON(label="Raw Results (for debugging)")
413
+
414
+
415
+ gr.Markdown(
416
+ f"""
417
+ **Explanation:**
418
+ * **Criterion:** The quality aspect being evaluated (using the positive prompt text).
419
+ * **Sim (+):** Cosine similarity between the image and the *positive* text prompt (e.g., "optimal centering"). Higher is better.
420
+ * **Sim (-):** Cosine similarity between the image and the *negative* text prompt (e.g., "poorly centered"). Lower is better.
421
+ * **Difference:** Sim (+) - Sim (-). A large positive difference indicates the image is much closer to the positive description.
422
+ * **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}, otherwise FAIL. This is the main comparative assessment.
423
+ * **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}, otherwise FAIL. A simpler check based only on positive similarity.
424
+ """
 
 
425
  )
426
+
427
+ # Conectar el botón a la función de procesamiento
428
+ submit_button.click(
429
+ fn=assess_quality,
430
+ inputs=input_image,
431
+ outputs=[output_dataframe, output_label, output_json]
432
  )
433
 
434
  # --- Iniciar la Aplicación Gradio ---
435
+ # Al desplegar en Spaces, Gradio se encarga de esto automáticamente.
436
+ # Para ejecutar localmente: demo.launch()
437
+ # Para Spaces, es mejor dejar que HF maneje el launch.
438
+ # demo.launch(share=True) # Para obtener un link público temporal si corres localmente
439
  if __name__ == "__main__":
440
+ # share=True solo si quieres un enlace público temporal desde local
441
+ # server_name="0.0.0.0" para permitir conexiones de red local
442
+ # server_port=7860 es el puerto estándar de HF Spaces
443
  demo.launch(server_name="0.0.0.0", server_port=7860)