|
import torch |
|
from torch import nn |
|
import gradio as gr |
|
|
|
|
|
class CNN(nn.Module): |
|
""" |
|
A custom CNN class. The network has: (1) a convolution layer with 1 input channel and 16 output channels with ReLU activation and 2x2 max-pooling, (2) a second convolution layer with 16 input channels and 32 output channels with ReLU activation and 2x2 max-pooling, and (3) a linear output layer with 10 outputs. |
|
""" |
|
def __init__(self): |
|
super(CNN,self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(1,16,5,stride=1,padding=2), |
|
nn.ReLU(), |
|
nn.MaxPool2d(kernel_size=2), |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(16,32,5,1,2), |
|
nn.ReLU(), |
|
nn.MaxPool2d(2), |
|
) |
|
self.out = nn.Linear(32*7*7,10) |
|
|
|
|
|
def forward(self,x): |
|
x=self.conv1(x) |
|
x=self.conv2(x) |
|
x = x.view(-1,32*7*7) |
|
return self.out(x) |
|
|
|
|
|
model = CNN() |
|
model.load_state_dict(torch.load('mnist2.pkl',map_location=torch.device('cpu'))) |
|
model.eval() |
|
|
|
|
|
def predict(img): |
|
x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. |
|
with torch.no_grad(): |
|
pred = model(x)[0] |
|
return int(pred.argmax()) |
|
|
|
|
|
title = "Guess that digit" |
|
description = "Draw your favorite base-10 digit (0-9) and click submit - I'll try to guess what you drew! I do a bit better if you're not too messy and your digit is fairly centered." |
|
gr.Interface(fn=predict, |
|
inputs="sketchpad", |
|
outputs="label", |
|
title = title, |
|
description = description, |
|
).launch() |