import torch from torch import nn import gradio as gr # Define the custom CNN model class that was trained on the MNIST data class CNN(nn.Module): """ A custom CNN class. The network has: (1) a convolution layer with 1 input channel and 16 output channels with ReLU activation and 2x2 max-pooling, (2) a second convolution layer with 16 input channels and 32 output channels with ReLU activation and 2x2 max-pooling, and (3) a linear output layer with 10 outputs. """ def __init__(self): super(CNN,self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(1,16,5,stride=1,padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=2), ) self.conv2 = nn.Sequential( nn.Conv2d(16,32,5,1,2), nn.ReLU(), nn.MaxPool2d(2), ) self.out = nn.Linear(32*7*7,10) # Forward propogation method def forward(self,x): x=self.conv1(x) x=self.conv2(x) x = x.view(-1,32*7*7) return self.out(x) # Initialize an instance and load in the saved state_dict for the trained model model = CNN() model.load_state_dict(torch.load('mnist2.pkl',map_location=torch.device('cpu'))) model.eval() # Prediction function def predict(img): x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. with torch.no_grad(): pred = model(x)[0] return int(pred.argmax()) # Define and launch gradio interfact with sketchopad input and classification label output title = "Guess that digit" description = "Draw your favorite base-10 digit (0-9) and click submit - I'll try to guess what you drew! I do a bit better if you're not too messy and your digit is fairly centered." gr.Interface(fn=predict, inputs="sketchpad", outputs="label", title = title, description = description, ).launch()