Spaces:
Sleeping
Sleeping
File size: 11,625 Bytes
02cd084 1adc43a 02cd084 b258c4d 1adc43a 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 b258c4d 02cd084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import re
import random
import linecache
import subprocess
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
import os
from dotenv import load_dotenv
from PIL import Image
# Import required modules
from pymavlink import mavutil
import json
class PlotCreator:
"""
PlotCreator is a class that generates Python scripts to plot MAVLink data
provided by a user, leveraging OpenAI's models for conversational agents.
"""
last_code = "" # stores the last code generated
logfile_name = ""
script_path = ""
plot_path = ""
def __init__(self):
"""
Initialize an instance of PlotCreator.
"""
load_dotenv() # load environment variables from a .env file
self.model = os.getenv("OPENAI_MODEL") # get the name of the OpenAI model to use
# create an instance of ChatOpenAI with the specified model, maximum tokens, and temperature
llm = ChatOpenAI(model_name=self.model, max_tokens=2000, temperature=0)
# define the input variables and template for the prompt to generate Python scripts
mavlink_data_prompt = PromptTemplate(
input_variables=["data_types", "history", "human_input", "file", "output_file"],
template="You are an AI conversation agent that will be used for generating python scripts to plot mavlink data provided by the user. Please create a python script using matplotlib and pymavlink's mavutil to plot the data provided by the user. Please do not explain the code just return the script. Please plot each independent variable over time in seconds. Please save the plot to file named {output_file} with at least 400 dpi and do not call plt.show(). please use blocking=false in your call to recv_match and be sure to break the loop if a msg in None. here are the relevant data types in the log:\n\n{data_types} \n\nChat History:\n{history} \n\nHUMAN: {human_input} \n\nplease read this data from the file {file}.",
)
# create an instance of LLMChain with the defined prompt and verbosity
self.chain = LLMChain(verbose=True, llm=llm, prompt=mavlink_data_prompt)
@staticmethod
def extract_code_snippets(text):
"""
Extracts code snippets from a text.
This function searches the text for substrings enclosed in '```', which are assumed to be code snippets.
Args:
text (str): The text to search for code snippets.
Returns:
list: A list of code snippets found in the text. If no snippets are found, returns a list containing the original text.
"""
pattern = r'```.*?\n(.*?)```' # pattern to match code snippets enclosed in '```'
# use regex to find all matches of the pattern in the text
snippets = re.findall(pattern, text, re.DOTALL | re.MULTILINE)
if len(snippets) == 0: # if no snippets were found
snippets = [text] # treat the entire text as a single snippet
return snippets
@staticmethod
def write_plot_script(filename, text):
"""
Writes a script to a file.
Args:
filename (str): The name of the file to write the script to.
text (str): The script to write to the file.
"""
with open(filename, 'w') as file: # open the file for writing
file.write(text) # write the script to the file
def attempt_to_fix_sctript(self, filename, error_message):
"""
Attempts to fix a script that caused an error.
Args:
filename (str): The name of the file containing the script.
error_message (str): The error message produced by the script.
Returns:
list: A list containing the fixed script, or the original script with an error message if it couldn't be fixed.
"""
# create an instance of ChatOpenAI with the specified model, maximum tokens, and temperature
llm = ChatOpenAI(model_name=self.model , max_tokens=8000, temperature=0)
# define the input variables and template for the prompt to generate Python scripts
fix_plot_script_template = PromptTemplate(
input_variables=["data_types", "error", "script"],
template="You are an AI agent that is designed to debug scripts created to plot mavlink data using matplotlib and pymavlink's mavutil. the following script produced this error: \n\n{script}\n\nThe error is: \n\n{error}\n\n Here are message definitions that are possibly relevant for the script:\n\n {data_types}\n\n. Please fix the script so that it produces the correct plot. please return the fixed script in a markdown code block.",
)
# read script from file
with open(filename, 'r') as file:
script = file.read()
# create an instance of LLMChain with the defined prompt and verbosity
chain = LLMChain(verbose=True, llm=llm, prompt=fix_plot_script_template)
try:
response = chain.run({"data_types" : self.message_types, "error": error_message, "script": script}) # run the LLMChain with the error and script as input
except:
return "Sorry I couldn't fix the script. Here is the original script I tried:\n\n" + script
print(response)
code = PlotCreator.extract_code_snippets(response) # extract the fixed script from the response
PlotCreator.write_plot_script("plot.py", code[0]) # write the fixed script to a file
# run the fixed script
try:
subprocess.check_output(["python", self.script_path], stderr=subprocess.STDOUT)
except:
code[0] = "Sorry I was unable to fix the script.\nThis is my attempt to fix it:\n\n" + code[0]
return code
def set_logfile_name(self, filename):
"""
Set the name of the log file.
:param filename: The name of the log file.
:type filename: str
"""
# extract the path to the log file
path = os.path.dirname(filename)
self.logfile_name = filename
self.script_path = os.path.join(path, "plot.py")
self.plot_path = os.path.join(path, "plot.png")
def find_relevant_data_types(self, human_input):
# Search the database for documents that are similar to the human input
docs = self.db.similarity_search(human_input)
# Concatenate the content of the documents into a string
data_type_info_text = ""
for doc in docs:
data_type_info_text += doc.page_content + "\n\n"
return data_type_info_text
def run_script(self):
# Run the script and if it doesn't work, capture the output and call attempt_to_fix_script
try:
subprocess.check_output(["python", self.script_path], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
print(e.output.decode())
code = self.attempt_to_fix_sctript(self.script_path, e.output.decode())
self.last_code = code[0]
except Exception as e:
print(e)
code = self.attempt_to_fix_sctript(self.script_path, str(e))
self.last_code = code[0]
# Return a list containing the filename of the plot and the code used to generate it
return [[(None, (self.plot_path,))], self.last_code]
def create_plot(self, human_input, data_type_info_text):
"""
Create a plot based on the input provided by the human.
:param human_input: Input provided by the human.
:type human_input: str
"""
# Create a history of generated scripts if one exists
if self.last_code != "":
history = "\n\nLast script generated:\n\n" + self.last_code
else:
history = ""
# Generate a response by running the chain with the relevant data types, history, file name and human input
response = self.chain.run({"data_types" : data_type_info_text, "history" : history, "file": self.logfile_name, "human_input": human_input, "output_file": self.plot_path})
print(response)
# Parse the code from the response
code = self.extract_code_snippets(response)
# Write the code to a file named "plot.py"
self.write_plot_script(self.script_path, code[0])
# Store the code for the next iteration
self.last_code = code[0]
return code[0]
def parse_mavlink_log(self):
"""
Parse the MAVLink log to extract unique message types and their fields.
:return: A JSON string representation of the unique message types and their fields.
:rtype: str
"""
# Initialize a dictionary to store unique message types and their fields
self.message_types = {}
# Establish a MAVLink connection
mav_log = mavutil.mavlink_connection(self.logfile_name)
# Loop through the log file and extract all unique message types
while True:
try:
# Receive a message
msg = mav_log.recv_match(blocking=False, type=None)
# Check if we received a message
if msg is None:
break
# Store the unique message types and their fields in the dictionary
if msg.get_type() not in self.message_types:
# Add the message type and its fields to the dictionary
self.message_types[msg.get_type()] = {
"count": 1,
"fields": {field: type(getattr(msg, field)).__name__ for field in msg.get_fieldnames()}
}
else:
# Increment the count for this message type
self.message_types[msg.get_type()]["count"] += 1
except KeyboardInterrupt:
break
except:
print("Unknown error")
break
# Create embeddings for the message types
self.create_embeddings(self.message_types)
# Return a JSON string of the message types
return json.dumps(self.message_types, indent=4)
def create_embedding(self, texts):
"""
Create OpenAI embeddings for a list of texts.
:param texts: A list of texts to create embeddings for.
:type texts: list of str
"""
# Initialize a dictionary to store the embeddings
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
self.db = Chroma.from_texts(texts, embeddings)
def create_embeddings(self, message_types):
"""
Create OpenAI embeddings for a dictionary of message types.
:param message_types: A dictionary of message types to create embeddings for.
:type message_types: dict
"""
print(message_types)
# Convert the message types to a list of JSON strings
texts = []
for message_type in message_types:
texts.append(json.dumps({ message_type : message_types[message_type]}))
print(f"Texts: {texts}")
# Create the embeddings
self.create_embedding(texts) |