File size: 4,371 Bytes
05bad85
 
 
 
 
 
5fc596d
 
05bad85
 
 
561df63
5fc596d
 
 
05bad85
 
 
5fc596d
 
 
05bad85
 
 
5fc596d
 
 
 
 
 
05bad85
5fc596d
05bad85
5fc596d
05bad85
 
 
5fc596d
 
 
 
 
05bad85
 
5fc596d
 
 
 
 
 
 
 
 
561df63
05bad85
5fc596d
 
05bad85
5fc596d
 
05bad85
 
 
 
 
 
 
5fc596d
05bad85
5fc596d
05bad85
 
5fc596d
05bad85
 
 
 
 
 
 
5fc596d
05bad85
 
5fc596d
05bad85
 
5fc596d
05bad85
5fc596d
05bad85
 
 
 
 
 
 
5fc596d
05bad85
 
 
 
 
 
 
 
 
5fc596d
05bad85
 
 
 
 
 
 
5fc596d
05bad85
 
 
 
 
 
 
 
5fc596d
05bad85
5fc596d
05bad85
 
 
 
 
 
 
 
5fc596d
05bad85
 
 
 
 
 
 
5fc596d
05bad85
 
 
 
5fc596d
 
 
05bad85
5fc596d
05bad85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import spaces
import gradio as gr
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
from translatepy import Translator
import numpy as np
import random
import os
hf_token = os.environ.get('HF_TOKEN')
from io import BytesIO

translator = Translator()

# Constants
model = "black-forest-labs/FLUX.1-dev"



MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
    transformer = FluxTransformer2DModel.from_single_file(
        "https://huggingface.co/ekt1701/Test_case/blob/main/rayflux_v10.safetensors",
        torch_dtype=torch.bfloat16
    )
    pipe = FluxPipeline.from_pretrained(
        model, 
        transformer=transformer,
        torch_dtype=torch.bfloat16, token=hf_token)
    pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
        pipe.scheduler.config, use_beta_sigmas=True
    )
    pipe.to("cuda")
    
    
@spaces.GPU()
def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt = prompt, 
            width = width,
            height = height,
            num_inference_steps = num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=nums,
            generator = generator
    ).images

    
    return image, seed


css="""
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.HTML("<h1><center>Image Model Testing</center></h1><p><center>RayFlux V1 Model.</center></p>")
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=2,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Gallery(label="Gallery", format="png", columns = 1, preview=True, height=400)
        
        with gr.Accordion("Advanced Settings", open=False):
                       
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0,
                    maximum=10,
                    step=0.1,
                    value=3.5,
                )


            with gr.Row():
            
                nums = gr.Slider(
                    label="Number of Images",
                    minimum=1,
                    maximum=2,
                    step=1,
                    value=1,
                    scale=1,
                )
       
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=-1,
                )
            
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
        outputs = [result, seed]
    )
    
demo.launch()