Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +153 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from PIL import Image
|
7 |
+
import requests
|
8 |
+
from translatepy import Translator
|
9 |
+
import numpy as np
|
10 |
+
import random
|
11 |
+
import os
|
12 |
+
hf_token = os.environ.get('HF_TOKEN')
|
13 |
+
from io import BytesIO
|
14 |
+
|
15 |
+
translator = Translator()
|
16 |
+
|
17 |
+
# Constants
|
18 |
+
model = "black-forest-labs/FLUX.1-dev"
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
MAX_SEED = np.iinfo(np.int32).max
|
23 |
+
MAX_IMAGE_SIZE = 2048
|
24 |
+
|
25 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
transformer = FluxTransformer2DModel.from_single_file(
|
28 |
+
"https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v27.safetensors",
|
29 |
+
torch_dtype=torch.bfloat16
|
30 |
+
)
|
31 |
+
pipe = FluxPipeline.from_pretrained(
|
32 |
+
model,
|
33 |
+
transformer=transformer,
|
34 |
+
torch_dtype=torch.bfloat16, token=hf_token)
|
35 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
|
36 |
+
pipe.scheduler.config, use_beta_sigmas=True
|
37 |
+
)
|
38 |
+
pipe.to("cuda")
|
39 |
+
|
40 |
+
|
41 |
+
@spaces.GPU()
|
42 |
+
def infer(prompt, width, height, num_inference_steps, guidance_scale, nums, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)):
|
43 |
+
if randomize_seed:
|
44 |
+
seed = random.randint(0, MAX_SEED)
|
45 |
+
generator = torch.Generator().manual_seed(seed)
|
46 |
+
image = pipe(
|
47 |
+
prompt = prompt,
|
48 |
+
width = width,
|
49 |
+
height = height,
|
50 |
+
num_inference_steps = num_inference_steps,
|
51 |
+
guidance_scale=guidance_scale,
|
52 |
+
num_images_per_prompt=nums,
|
53 |
+
generator = generator
|
54 |
+
).images
|
55 |
+
|
56 |
+
|
57 |
+
return image, seed
|
58 |
+
|
59 |
+
|
60 |
+
css="""
|
61 |
+
#col-container {
|
62 |
+
margin: 0 auto;
|
63 |
+
max-width: 1024px;
|
64 |
+
}
|
65 |
+
"""
|
66 |
+
|
67 |
+
with gr.Blocks(css=css) as demo:
|
68 |
+
|
69 |
+
with gr.Column(elem_id="col-container"):
|
70 |
+
gr.HTML("<h1><center>Model Testing</center></h1><p><center>Chroma</center></p>")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
|
74 |
+
prompt = gr.Text(
|
75 |
+
label="Prompt",
|
76 |
+
show_label=False,
|
77 |
+
max_lines=2,
|
78 |
+
placeholder="Enter your prompt",
|
79 |
+
container=False,
|
80 |
+
)
|
81 |
+
|
82 |
+
run_button = gr.Button("Run", scale=0)
|
83 |
+
|
84 |
+
result = gr.Gallery(label="Gallery", format="png", columns = 1, preview=True, height=400)
|
85 |
+
|
86 |
+
with gr.Accordion("Advanced Settings", open=False):
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
|
90 |
+
width = gr.Slider(
|
91 |
+
label="Width",
|
92 |
+
minimum=256,
|
93 |
+
maximum=MAX_IMAGE_SIZE,
|
94 |
+
step=32,
|
95 |
+
value=1024,
|
96 |
+
)
|
97 |
+
|
98 |
+
height = gr.Slider(
|
99 |
+
label="Height",
|
100 |
+
minimum=256,
|
101 |
+
maximum=MAX_IMAGE_SIZE,
|
102 |
+
step=32,
|
103 |
+
value=1024,
|
104 |
+
)
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
|
108 |
+
num_inference_steps = gr.Slider(
|
109 |
+
label="Number of inference steps",
|
110 |
+
minimum=1,
|
111 |
+
maximum=50,
|
112 |
+
step=1,
|
113 |
+
value=30,
|
114 |
+
)
|
115 |
+
|
116 |
+
guidance_scale = gr.Slider(
|
117 |
+
label="Guidance Scale",
|
118 |
+
minimum=0,
|
119 |
+
maximum=10,
|
120 |
+
step=0.1,
|
121 |
+
value=3.5,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
|
127 |
+
nums = gr.Slider(
|
128 |
+
label="Number of Images",
|
129 |
+
minimum=1,
|
130 |
+
maximum=2,
|
131 |
+
step=1,
|
132 |
+
value=1,
|
133 |
+
scale=1,
|
134 |
+
)
|
135 |
+
|
136 |
+
seed = gr.Slider(
|
137 |
+
label="Seed",
|
138 |
+
minimum=0,
|
139 |
+
maximum=MAX_SEED,
|
140 |
+
step=1,
|
141 |
+
value=-1,
|
142 |
+
)
|
143 |
+
|
144 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
145 |
+
|
146 |
+
gr.on(
|
147 |
+
triggers=[run_button.click, prompt.submit],
|
148 |
+
fn = infer,
|
149 |
+
inputs = [prompt, width, height, num_inference_steps, guidance_scale, nums, seed, randomize_seed],
|
150 |
+
outputs = [result, seed]
|
151 |
+
)
|
152 |
+
|
153 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
pillow
|
6 |
+
scipy
|
7 |
+
translatepy
|
8 |
+
accelerate
|
9 |
+
sentencepiece
|
10 |
+
peft
|