File size: 5,098 Bytes
236f099
 
 
5f87ad8
236f099
b9d7680
236f099
5f87ad8
236f099
 
5f87ad8
236f099
aca4325
b9d7680
236f099
5f87ad8
 
236f099
 
 
 
b9d7680
 
 
 
 
5f87ad8
236f099
 
b9d7680
236f099
5f87ad8
 
 
236f099
 
 
 
 
5f87ad8
236f099
 
 
 
 
 
5f87ad8
 
 
236f099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f87ad8
236f099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f87ad8
236f099
 
 
 
 
 
1acae0b
5f87ad8
236f099
 
 
5f87ad8
236f099
5f87ad8
 
 
236f099
5f87ad8
236f099
5f87ad8
236f099
 
 
 
 
5f87ad8
236f099
 
 
b9d7680
 
 
 
5f87ad8
236f099
5f87ad8
236f099
 
b9d7680
 
 
236f099
 
32b462e
 
 
 
d509a14
32b462e
 
8c62f71
32b462e
 
d509a14
32b462e
d509a14
32b462e
 
 
b9d7680
d509a14
 
b9d7680
 
32b462e
8c62f71
d509a14
 
 
32b462e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt, 
        width=width,
        height=height,
        num_inference_steps=num_inference_steps, 
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0] 
    return image, seed

examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

    # Adding image input options at the bottom
    gr.Markdown("## Upload or select an additional image")
    
    with gr.Row():
        uploaded_image = gr.Image(label="Upload Image", type="pil")
        image_url = gr.Textbox(label="Image URL", placeholder="Enter image URL")
        use_generated_image = gr.Button("Use Generated Image")
    
    additional_image_output = gr.Image(label="Selected Image", show_label=False)

    def select_image(uploaded_image, image_url, use_generated=False):
        if use_generated:
            return result.value
        elif uploaded_image is not None:
            return uploaded_image
        elif image_url:
            try:
                img = gr.Image.load(image_url)
                return img
            except Exception as e:
                return f"Failed to load image from URL: {e}"
        return None

    use_generated_image.click(fn=lambda: select_image(None, None, True), inputs=[], outputs=additional_image_output)
    uploaded_image.change(fn=select_image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output)
    image_url.submit(fn=select_image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output)

demo.launch()