Spaces:
Runtime error
Runtime error
File size: 5,572 Bytes
236f099 5f87ad8 236f099 b9d7680 c8ca415 236f099 5f87ad8 236f099 5f87ad8 c8ca415 236f099 acf1bde a348ce9 aca4325 b9d7680 236f099 a348ce9 5f87ad8 236f099 b9d7680 5f87ad8 236f099 c8ca415 236f099 b9d7680 236f099 5f87ad8 236f099 5f87ad8 236f099 5f87ad8 236f099 c8ca415 236f099 5f87ad8 236f099 5f87ad8 236f099 1acae0b 5f87ad8 236f099 5f87ad8 236f099 5f87ad8 236f099 5f87ad8 236f099 5f87ad8 236f099 5f87ad8 236f099 b9d7680 5f87ad8 236f099 5f87ad8 236f099 b9d7680 236f099 32b462e d509a14 32b462e 8c62f71 32b462e d509a14 32b462e 5cbe517 32b462e b9d7680 d509a14 b9d7680 32b462e 8c62f71 d509a14 32b462e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from huggingface_hub import InferenceClient
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
sdxl = InferenceClient(model="stabilityai/stable-diffusion-xl-base-1.0", token=os.environ['HF_TOKEN'])
#pipeline2Image = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtypes=torch.bfloat16).to("cpu")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# (duration=190)
@spaces.GPU
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
image = sdxl.text_to_image(
"Dark gothic city in a misty night, lit by street lamps. A man in a cape is walking away from us",
guidance_scale=9, num_inference_steps=50
)
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
# Adding image input options at the bottom
gr.Markdown("## Upload or select an additional image")
with gr.Row():
uploaded_image = gr.Image(label="Upload Image", type="pil")
image_url = gr.Textbox(label="Image URL", placeholder="Enter image URL")
use_generated_image = gr.Button("Use Generated Image")
additional_image_output = gr.Image(label="Selected Image", show_label=False)
def select_image(uploaded_image, image_url, use_generated=False):
if use_generated:
return result
elif uploaded_image is not None:
return uploaded_image
elif image_url:
try:
img = gr.Image.load(image_url)
return img
except Exception as e:
return f"Failed to load image from URL: {e}"
return None
use_generated_image.click(fn=lambda: select_image(None, None, True), inputs=[], outputs=additional_image_output)
uploaded_image.change(fn=select_image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output)
image_url.submit(fn=select_image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output)
demo.launch()
|