Spaces:
Running
on
Zero
Running
on
Zero
# ruff: noqa: E402 | |
# Above allows ruff to ignore E402: module level import not at top of file | |
import json | |
import re | |
import tempfile | |
from collections import OrderedDict | |
from importlib.resources import files | |
from pydub import AudioSegment, silence | |
import click | |
import gradio as gr | |
import numpy as np | |
import soundfile as sf | |
import torchaudio | |
from cached_path import cached_path | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
try: | |
import spaces | |
USING_SPACES = True | |
except ImportError: | |
USING_SPACES = False | |
def gpu_decorator(func): | |
if USING_SPACES: | |
return spaces.GPU(func) | |
else: | |
return func | |
from f5_tts.model import DiT, UNetT | |
from f5_tts.infer.utils_infer import ( | |
load_vocoder, | |
load_model, | |
preprocess_ref_audio_text, | |
infer_process, | |
remove_silence_for_generated_wav, | |
save_spectrogram, | |
) | |
DEFAULT_TTS_MODEL = "F5-TTS" | |
tts_model_choice = DEFAULT_TTS_MODEL | |
DEFAULT_TTS_MODEL_CFG = [ | |
"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors", | |
"hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt", | |
json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)), | |
] | |
# Add this right after DEFAULT_TTS_MODEL_CFG | |
def switch_tts_model(new_choice): | |
global tts_model_choice | |
if new_choice == "Custom": | |
custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom() | |
tts_model_choice = [ | |
"Custom", | |
custom_ckpt_path, | |
custom_vocab_path, | |
json.loads(custom_model_cfg) | |
] | |
return ( | |
gr.update(visible=True, value=custom_ckpt_path), | |
gr.update(visible=True, value=custom_vocab_path), | |
gr.update(visible=True, value=custom_model_cfg) | |
) | |
else: | |
tts_model_choice = new_choice | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
) | |
# Add this right after DEFAULT_TTS_MODEL_CFG definition | |
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt") | |
def load_last_used_custom(): | |
try: | |
custom = [] | |
with open(last_used_custom, "r", encoding="utf-8") as f: | |
for line in f: | |
custom.append(line.strip()) | |
return custom | |
except FileNotFoundError: | |
last_used_custom.parent.mkdir(parents=True, exist_ok=True) | |
return DEFAULT_TTS_MODEL_CFG | |
def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg): | |
global tts_model_choice | |
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)] | |
with open(last_used_custom, "w", encoding="utf-8") as f: | |
f.write("\n".join([custom_ckpt_path, custom_vocab_path, custom_model_cfg]) + "\n") | |
# Audio constants for podcast | |
target_sample_rate = 24000 | |
# load models | |
vocoder = load_vocoder() | |
def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))): | |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) | |
return load_model(DiT, F5TTS_model_cfg, ckpt_path) | |
def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))): | |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) | |
return load_model(UNetT, E2TTS_model_cfg, ckpt_path) | |
def load_custom(ckpt_path: str, vocab_path="", model_cfg=None): | |
ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip() | |
if ckpt_path.startswith("hf://"): | |
ckpt_path = str(cached_path(ckpt_path)) | |
if vocab_path.startswith("hf://"): | |
vocab_path = str(cached_path(vocab_path)) | |
if model_cfg is None: | |
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) | |
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path) | |
F5TTS_ema_model = load_f5tts() | |
E2TTS_ema_model = load_e2tts() if USING_SPACES else None | |
custom_ema_model, pre_custom_path = None, "" | |
chat_model_state = None | |
chat_tokenizer_state = None | |
def generate_response(messages, model, tokenizer): | |
"""Generate response using Qwen""" | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True, | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
) | |
generated_ids = [ | |
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
def infer( | |
ref_audio_orig, | |
ref_text, | |
gen_text, | |
model, | |
remove_silence, | |
cross_fade_duration=0.15, | |
nfe_step=32, | |
speed=1, | |
show_info=gr.Info, | |
): | |
if not ref_audio_orig: | |
gr.Warning("Please provide reference audio.") | |
return gr.update(), gr.update(), ref_text | |
if not gen_text.strip(): | |
gr.Warning("Please enter text to generate.") | |
return gr.update(), gr.update(), ref_text | |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info) | |
if model == "F5-TTS": | |
ema_model = F5TTS_ema_model | |
elif model == "E2-TTS": | |
global E2TTS_ema_model | |
if E2TTS_ema_model is None: | |
show_info("Loading E2-TTS model...") | |
E2TTS_ema_model = load_e2tts() | |
ema_model = E2TTS_ema_model | |
elif isinstance(model, list) and model[0] == "Custom": | |
assert not USING_SPACES, "Only official checkpoints allowed in Spaces." | |
global custom_ema_model, pre_custom_path | |
if pre_custom_path != model[1]: | |
show_info("Loading Custom TTS model...") | |
custom_ema_model = load_custom(model[1], vocab_path=model[2], model_cfg=model[3]) | |
pre_custom_path = model[1] | |
ema_model = custom_ema_model | |
final_wave, final_sample_rate, combined_spectrogram = infer_process( | |
ref_audio, | |
ref_text, | |
gen_text, | |
ema_model, | |
vocoder, | |
cross_fade_duration=cross_fade_duration, | |
nfe_step=nfe_step, | |
speed=speed, | |
show_info=show_info, | |
progress=gr.Progress(), | |
) | |
# Remove silence | |
if remove_silence: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
sf.write(f.name, final_wave, final_sample_rate) | |
remove_silence_for_generated_wav(f.name) | |
final_wave, _ = torchaudio.load(f.name) | |
final_wave = final_wave.squeeze().cpu().numpy() | |
# Save the spectrogram | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: | |
spectrogram_path = tmp_spectrogram.name | |
save_spectrogram(combined_spectrogram, spectrogram_path) | |
return (final_sample_rate, final_wave), spectrogram_path, ref_text | |
with gr.Blocks() as app_credits: | |
gr.Markdown(""" | |
# Credits | |
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) | |
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration | |
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat | |
""") | |
with gr.Blocks() as app_tts: | |
gr.Markdown("# Batched TTS") | |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") | |
gen_text_input = gr.Textbox(label="Text to Generate", lines=10) | |
generate_btn = gr.Button("Synthesize", variant="primary") | |
with gr.Accordion("Advanced Settings", open=False): | |
ref_text_input = gr.Textbox( | |
label="Reference Text", | |
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", | |
lines=2, | |
) | |
remove_silence = gr.Checkbox( | |
label="Remove Silences", | |
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", | |
value=False, | |
) | |
speed_slider = gr.Slider( | |
label="Speed", | |
minimum=0.3, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
info="Adjust the speed of the audio.", | |
) | |
nfe_slider = gr.Slider( | |
label="NFE Steps", | |
minimum=4, | |
maximum=64, | |
value=32, | |
step=2, | |
info="Set the number of denoising steps.", | |
) | |
cross_fade_duration_slider = gr.Slider( | |
label="Cross-Fade Duration (s)", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.15, | |
step=0.01, | |
info="Set the duration of the cross-fade between audio clips.", | |
) | |
audio_output = gr.Audio(label="Synthesized Audio") | |
spectrogram_output = gr.Image(label="Spectrogram") | |
def basic_tts( | |
ref_audio_input, | |
ref_text_input, | |
gen_text_input, | |
remove_silence, | |
cross_fade_duration_slider, | |
nfe_slider, | |
speed_slider, | |
): | |
audio_out, spectrogram_path, ref_text_out = infer( | |
ref_audio_input, | |
ref_text_input, | |
gen_text_input, | |
tts_model_choice, | |
remove_silence, | |
cross_fade_duration=cross_fade_duration_slider, | |
nfe_step=nfe_slider, | |
speed=speed_slider, | |
) | |
return audio_out, spectrogram_path, ref_text_out | |
generate_btn.click( | |
basic_tts, | |
inputs=[ | |
ref_audio_input, | |
ref_text_input, | |
gen_text_input, | |
remove_silence, | |
cross_fade_duration_slider, | |
nfe_slider, | |
speed_slider, | |
], | |
outputs=[audio_output, spectrogram_output, ref_text_input], | |
) | |
with gr.Blocks() as app_multistyle: | |
gr.Markdown("# Multiple Speech-Type Generation") | |
# ... [Keep original multistyle interface unchanged] ... | |
with gr.Blocks() as app_podcast: | |
gr.Markdown("# Podcast Generation") | |
with gr.Row(): | |
with gr.Column(): | |
speaker1_name = gr.Textbox(label="Speaker 1 Name", placeholder="e.g. John") | |
ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath") | |
ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2) | |
with gr.Column(): | |
speaker2_name = gr.Textbox(label="Speaker 2 Name", placeholder="e.g. Sarah") | |
ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath") | |
ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2) | |
script_input = gr.Textbox( | |
label="Podcast Script", | |
lines=10, | |
placeholder="Format:\nSpeaker1: Hello...\nSpeaker2: Hi...\nSpeaker1: How are you?..." | |
) | |
with gr.Row(): | |
podcast_model_choice = gr.Radio( | |
choices=["F5-TTS", "E2-TTS"], | |
label="TTS Model", | |
value="F5-TTS" | |
) | |
podcast_remove_silence = gr.Checkbox( | |
label="Remove Silences Between Dialogues", | |
value=True | |
) | |
generate_podcast_btn = gr.Button("Generate Podcast", variant="primary") | |
podcast_output = gr.Audio(label="Generated Podcast", autoplay=True) | |
def generate_podcast( | |
script, | |
speaker1, | |
ref_audio1, | |
ref_text1, | |
speaker2, | |
ref_audio2, | |
ref_text2, | |
model, | |
remove_silence | |
): | |
# Validate inputs | |
if not all([speaker1, speaker2]): | |
raise gr.Error("Both speaker names must be provided") | |
if not ref_audio1 or not ref_audio2: | |
raise gr.Error("Both reference audios must be provided") | |
# Split script into speaker blocks | |
pattern = re.compile(f"({re.escape(speaker1)}:|{re.escape(speaker2)}:)") | |
speaker_blocks = pattern.split(script)[1:] | |
generated_audio_segments = [] | |
current_speaker = None | |
for i in range(0, len(speaker_blocks), 2): | |
speaker_tag = speaker_blocks[i].strip(":") | |
text = speaker_blocks[i+1].strip() | |
# Select reference based on speaker | |
if speaker_tag == speaker1: | |
ref_audio = ref_audio1 | |
ref_text = ref_text1 | |
elif speaker_tag == speaker2: | |
ref_audio = ref_audio2 | |
ref_text = ref_text2 | |
else: | |
continue | |
# Generate audio for segment | |
audio_result, spectrogram, ref_text_out = infer( | |
ref_audio, | |
ref_text, | |
text, | |
model, | |
remove_silence, | |
cross_fade_duration=0.15, | |
nfe_step=32, | |
speed=1.0 | |
) | |
sr, audio_data = audio_result | |
generated_audio_segments.append(audio_data) | |
# Combine all audio segments | |
if generated_audio_segments: | |
final_audio = np.concatenate(generated_audio_segments) | |
return (target_sample_rate, final_audio) | |
return None | |
generate_podcast_btn.click( | |
generate_podcast, | |
inputs=[ | |
script_input, | |
speaker1_name, | |
ref_audio_input1, | |
ref_text_input1, | |
speaker2_name, | |
ref_audio_input2, | |
ref_text_input2, | |
podcast_model_choice, | |
podcast_remove_silence | |
], | |
outputs=podcast_output | |
) | |
with gr.Blocks() as app_chat: | |
gr.Markdown("# Voice Chat") | |
# ... [Keep original voice chat interface unchanged] ... | |
with gr.Blocks() as app: | |
gr.Markdown(f""" | |
# E2/F5 TTS | |
{"Local web UI for [F5 TTS](https://github.com/SWivid/F5-TTS)" if not USING_SPACES else "Online demo for [F5-TTS](https://github.com/SWivid/F5-TTS)"} | |
""") | |
with gr.Row(): | |
if not USING_SPACES: | |
choose_tts_model = gr.Radio( | |
choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], | |
label="TTS Model", | |
value=DEFAULT_TTS_MODEL | |
) | |
else: | |
choose_tts_model = gr.Radio( | |
choices=[DEFAULT_TTS_MODEL, "E2-TTS"], | |
label="TTS Model", | |
value=DEFAULT_TTS_MODEL | |
) | |
custom_ckpt_path = gr.Dropdown( | |
choices=[DEFAULT_TTS_MODEL_CFG[0]], | |
value=load_last_used_custom()[0], | |
allow_custom_value=True, | |
label="Model Path", | |
visible=False | |
) | |
custom_vocab_path = gr.Dropdown( | |
choices=[DEFAULT_TTS_MODEL_CFG[1]], | |
value=load_last_used_custom()[1], | |
allow_custom_value=True, | |
label="Vocab Path", | |
visible=False | |
) | |
custom_model_cfg = gr.Dropdown( | |
choices=[DEFAULT_TTS_MODEL_CFG[2]], | |
value=load_last_used_custom()[2], | |
allow_custom_value=True, | |
label="Model Config", | |
visible=False | |
) | |
choose_tts_model.change( | |
switch_tts_model, | |
inputs=[choose_tts_model], | |
outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg] | |
) | |
gr.TabbedInterface( | |
[app_tts, app_podcast, app_multistyle, app_chat, app_credits], | |
["Basic TTS", "Podcast", "Multi-Style", "Voice Chat", "Credits"], | |
) | |
def main(port, host, share, api, root_path): | |
global app | |
print("Launching app...") | |
app.queue(api_open=api).launch( | |
server_name=host, | |
server_port=port, | |
share=share, | |
show_api=api, | |
root_path=root_path | |
) | |
if __name__ == "__main__": | |
if not USING_SPACES: | |
main() | |
else: | |
app.queue().launch() |