Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,342 Bytes
699549f be8fe50 845c09f 699549f 845c09f 699549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# ruff: noqa: E402
# Above allows ruff to ignore E402: module level import not at top of file
import json
import re
import tempfile
from collections import OrderedDict
from importlib.resources import files
from pydub import AudioSegment, silence
import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
from f5_tts.model import DiT, UNetT
from f5_tts.infer.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
save_spectrogram,
)
DEFAULT_TTS_MODEL = "F5-TTS"
tts_model_choice = DEFAULT_TTS_MODEL
DEFAULT_TTS_MODEL_CFG = [
"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
"hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
]
# Add this right after DEFAULT_TTS_MODEL_CFG
def switch_tts_model(new_choice):
global tts_model_choice
if new_choice == "Custom":
custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
tts_model_choice = [
"Custom",
custom_ckpt_path,
custom_vocab_path,
json.loads(custom_model_cfg)
]
return (
gr.update(visible=True, value=custom_ckpt_path),
gr.update(visible=True, value=custom_vocab_path),
gr.update(visible=True, value=custom_model_cfg)
)
else:
tts_model_choice = new_choice
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
# Add this right after DEFAULT_TTS_MODEL_CFG definition
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt")
def load_last_used_custom():
try:
custom = []
with open(last_used_custom, "r", encoding="utf-8") as f:
for line in f:
custom.append(line.strip())
return custom
except FileNotFoundError:
last_used_custom.parent.mkdir(parents=True, exist_ok=True)
return DEFAULT_TTS_MODEL_CFG
def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
global tts_model_choice
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
with open(last_used_custom, "w", encoding="utf-8") as f:
f.write("\n".join([custom_ckpt_path, custom_vocab_path, custom_model_cfg]) + "\n")
# Audio constants for podcast
target_sample_rate = 24000
# load models
vocoder = load_vocoder()
def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
if ckpt_path.startswith("hf://"):
ckpt_path = str(cached_path(ckpt_path))
if vocab_path.startswith("hf://"):
vocab_path = str(cached_path(vocab_path))
if model_cfg is None:
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
F5TTS_ema_model = load_f5tts()
E2TTS_ema_model = load_e2tts() if USING_SPACES else None
custom_ema_model, pre_custom_path = None, ""
chat_model_state = None
chat_tokenizer_state = None
@gpu_decorator
def generate_response(messages, model, tokenizer):
"""Generate response using Qwen"""
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
)
generated_ids = [
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
model,
remove_silence,
cross_fade_duration=0.15,
nfe_step=32,
speed=1,
show_info=gr.Info,
):
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
if model == "F5-TTS":
ema_model = F5TTS_ema_model
elif model == "E2-TTS":
global E2TTS_ema_model
if E2TTS_ema_model is None:
show_info("Loading E2-TTS model...")
E2TTS_ema_model = load_e2tts()
ema_model = E2TTS_ema_model
elif isinstance(model, list) and model[0] == "Custom":
assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
global custom_ema_model, pre_custom_path
if pre_custom_path != model[1]:
show_info("Loading Custom TTS model...")
custom_ema_model = load_custom(model[1], vocab_path=model[2], model_cfg=model[3])
pre_custom_path = model[1]
ema_model = custom_ema_model
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path, ref_text
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
""")
with gr.Blocks() as app_tts:
gr.Markdown("# Batched TTS")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(
label="Reference Text",
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
lines=2,
)
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=1.0,
step=0.1,
info="Adjust the speed of the audio.",
)
nfe_slider = gr.Slider(
label="NFE Steps",
minimum=4,
maximum=64,
value=32,
step=2,
info="Set the number of denoising steps.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
@gpu_decorator
def basic_tts(
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
nfe_slider,
speed_slider,
):
audio_out, spectrogram_path, ref_text_out = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
tts_model_choice,
remove_silence,
cross_fade_duration=cross_fade_duration_slider,
nfe_step=nfe_slider,
speed=speed_slider,
)
return audio_out, spectrogram_path, ref_text_out
generate_btn.click(
basic_tts,
inputs=[
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
nfe_slider,
speed_slider,
],
outputs=[audio_output, spectrogram_output, ref_text_input],
)
with gr.Blocks() as app_multistyle:
gr.Markdown("# Multiple Speech-Type Generation")
# ... [Keep original multistyle interface unchanged] ...
with gr.Blocks() as app_podcast:
gr.Markdown("# Podcast Generation")
with gr.Row():
with gr.Column():
speaker1_name = gr.Textbox(label="Speaker 1 Name", placeholder="e.g. John")
ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
with gr.Column():
speaker2_name = gr.Textbox(label="Speaker 2 Name", placeholder="e.g. Sarah")
ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
script_input = gr.Textbox(
label="Podcast Script",
lines=10,
placeholder="Format:\nSpeaker1: Hello...\nSpeaker2: Hi...\nSpeaker1: How are you?..."
)
with gr.Row():
podcast_model_choice = gr.Radio(
choices=["F5-TTS", "E2-TTS"],
label="TTS Model",
value="F5-TTS"
)
podcast_remove_silence = gr.Checkbox(
label="Remove Silences Between Dialogues",
value=True
)
generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
podcast_output = gr.Audio(label="Generated Podcast", autoplay=True)
def generate_podcast(
script,
speaker1,
ref_audio1,
ref_text1,
speaker2,
ref_audio2,
ref_text2,
model,
remove_silence
):
# Validate inputs
if not all([speaker1, speaker2]):
raise gr.Error("Both speaker names must be provided")
if not ref_audio1 or not ref_audio2:
raise gr.Error("Both reference audios must be provided")
# Split script into speaker blocks
pattern = re.compile(f"({re.escape(speaker1)}:|{re.escape(speaker2)}:)")
speaker_blocks = pattern.split(script)[1:]
generated_audio_segments = []
current_speaker = None
for i in range(0, len(speaker_blocks), 2):
speaker_tag = speaker_blocks[i].strip(":")
text = speaker_blocks[i+1].strip()
# Select reference based on speaker
if speaker_tag == speaker1:
ref_audio = ref_audio1
ref_text = ref_text1
elif speaker_tag == speaker2:
ref_audio = ref_audio2
ref_text = ref_text2
else:
continue
# Generate audio for segment
audio_result, spectrogram, ref_text_out = infer(
ref_audio,
ref_text,
text,
model,
remove_silence,
cross_fade_duration=0.15,
nfe_step=32,
speed=1.0
)
sr, audio_data = audio_result
generated_audio_segments.append(audio_data)
# Combine all audio segments
if generated_audio_segments:
final_audio = np.concatenate(generated_audio_segments)
return (target_sample_rate, final_audio)
return None
generate_podcast_btn.click(
generate_podcast,
inputs=[
script_input,
speaker1_name,
ref_audio_input1,
ref_text_input1,
speaker2_name,
ref_audio_input2,
ref_text_input2,
podcast_model_choice,
podcast_remove_silence
],
outputs=podcast_output
)
with gr.Blocks() as app_chat:
gr.Markdown("# Voice Chat")
# ... [Keep original voice chat interface unchanged] ...
with gr.Blocks() as app:
gr.Markdown(f"""
# E2/F5 TTS
{"Local web UI for [F5 TTS](https://github.com/SWivid/F5-TTS)" if not USING_SPACES else "Online demo for [F5-TTS](https://github.com/SWivid/F5-TTS)"}
""")
with gr.Row():
if not USING_SPACES:
choose_tts_model = gr.Radio(
choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"],
label="TTS Model",
value=DEFAULT_TTS_MODEL
)
else:
choose_tts_model = gr.Radio(
choices=[DEFAULT_TTS_MODEL, "E2-TTS"],
label="TTS Model",
value=DEFAULT_TTS_MODEL
)
custom_ckpt_path = gr.Dropdown(
choices=[DEFAULT_TTS_MODEL_CFG[0]],
value=load_last_used_custom()[0],
allow_custom_value=True,
label="Model Path",
visible=False
)
custom_vocab_path = gr.Dropdown(
choices=[DEFAULT_TTS_MODEL_CFG[1]],
value=load_last_used_custom()[1],
allow_custom_value=True,
label="Vocab Path",
visible=False
)
custom_model_cfg = gr.Dropdown(
choices=[DEFAULT_TTS_MODEL_CFG[2]],
value=load_last_used_custom()[2],
allow_custom_value=True,
label="Model Config",
visible=False
)
choose_tts_model.change(
switch_tts_model,
inputs=[choose_tts_model],
outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg]
)
gr.TabbedInterface(
[app_tts, app_podcast, app_multistyle, app_chat, app_credits],
["Basic TTS", "Podcast", "Multi-Style", "Voice Chat", "Credits"],
)
@click.command()
@click.option("--port", "-p", default=None, type=int)
@click.option("--host", "-H", default=None)
@click.option("--share", "-s", default=True, is_flag=True)
@click.option("--api", "-a", default=True, is_flag=True)
@click.option("--root_path", "-r", default=None)
def main(port, host, share, api, root_path):
global app
print("Launching app...")
app.queue(api_open=api).launch(
server_name=host,
server_port=port,
share=share,
show_api=api,
root_path=root_path
)
if __name__ == "__main__":
if not USING_SPACES:
main()
else:
app.queue().launch() |