File size: 16,342 Bytes
699549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be8fe50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845c09f
 
699549f
845c09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# ruff: noqa: E402
# Above allows ruff to ignore E402: module level import not at top of file

import json
import re
import tempfile
from collections import OrderedDict
from importlib.resources import files
from pydub import AudioSegment, silence

import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer

try:
    import spaces
    USING_SPACES = True
except ImportError:
    USING_SPACES = False


def gpu_decorator(func):
    if USING_SPACES:
        return spaces.GPU(func)
    else:
        return func


from f5_tts.model import DiT, UNetT
from f5_tts.infer.utils_infer import (
    load_vocoder,
    load_model,
    preprocess_ref_audio_text,
    infer_process,
    remove_silence_for_generated_wav,
    save_spectrogram,
)


DEFAULT_TTS_MODEL = "F5-TTS"
tts_model_choice = DEFAULT_TTS_MODEL

DEFAULT_TTS_MODEL_CFG = [
    "hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
    "hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
    json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
]
# Add this right after DEFAULT_TTS_MODEL_CFG
def switch_tts_model(new_choice):
    global tts_model_choice
    if new_choice == "Custom":
        custom_ckpt_path, custom_vocab_path, custom_model_cfg = load_last_used_custom()
        tts_model_choice = [
            "Custom", 
            custom_ckpt_path,
            custom_vocab_path,
            json.loads(custom_model_cfg)
        ]
        return (
            gr.update(visible=True, value=custom_ckpt_path),
            gr.update(visible=True, value=custom_vocab_path),
            gr.update(visible=True, value=custom_model_cfg)
        )
    else:
        tts_model_choice = new_choice
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False)
        )
# Add this right after DEFAULT_TTS_MODEL_CFG definition
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt")

def load_last_used_custom():
    try:
        custom = []
        with open(last_used_custom, "r", encoding="utf-8") as f:
            for line in f:
                custom.append(line.strip())
        return custom
    except FileNotFoundError:
        last_used_custom.parent.mkdir(parents=True, exist_ok=True)
        return DEFAULT_TTS_MODEL_CFG

def set_custom_model(custom_ckpt_path, custom_vocab_path, custom_model_cfg):
    global tts_model_choice
    tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path, json.loads(custom_model_cfg)]
    with open(last_used_custom, "w", encoding="utf-8") as f:
        f.write("\n".join([custom_ckpt_path, custom_vocab_path, custom_model_cfg]) + "\n")
# Audio constants for podcast
target_sample_rate = 24000

# load models

vocoder = load_vocoder()


def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
    F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
    return load_model(DiT, F5TTS_model_cfg, ckpt_path)


def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
    E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
    return load_model(UNetT, E2TTS_model_cfg, ckpt_path)


def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
    ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
    if ckpt_path.startswith("hf://"):
        ckpt_path = str(cached_path(ckpt_path))
    if vocab_path.startswith("hf://"):
        vocab_path = str(cached_path(vocab_path))
    if model_cfg is None:
        model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
    return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)


F5TTS_ema_model = load_f5tts()
E2TTS_ema_model = load_e2tts() if USING_SPACES else None
custom_ema_model, pre_custom_path = None, ""

chat_model_state = None
chat_tokenizer_state = None


@gpu_decorator
def generate_response(messages, model, tokenizer):
    """Generate response using Qwen"""
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )

    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.95,
    )

    generated_ids = [
        output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


@gpu_decorator
def infer(
    ref_audio_orig,
    ref_text,
    gen_text,
    model,
    remove_silence,
    cross_fade_duration=0.15,
    nfe_step=32,
    speed=1,
    show_info=gr.Info,
):
    if not ref_audio_orig:
        gr.Warning("Please provide reference audio.")
        return gr.update(), gr.update(), ref_text

    if not gen_text.strip():
        gr.Warning("Please enter text to generate.")
        return gr.update(), gr.update(), ref_text

    ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)

    if model == "F5-TTS":
        ema_model = F5TTS_ema_model
    elif model == "E2-TTS":
        global E2TTS_ema_model
        if E2TTS_ema_model is None:
            show_info("Loading E2-TTS model...")
            E2TTS_ema_model = load_e2tts()
        ema_model = E2TTS_ema_model
    elif isinstance(model, list) and model[0] == "Custom":
        assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
        global custom_ema_model, pre_custom_path
        if pre_custom_path != model[1]:
            show_info("Loading Custom TTS model...")
            custom_ema_model = load_custom(model[1], vocab_path=model[2], model_cfg=model[3])
            pre_custom_path = model[1]
        ema_model = custom_ema_model

    final_wave, final_sample_rate, combined_spectrogram = infer_process(
        ref_audio,
        ref_text,
        gen_text,
        ema_model,
        vocoder,
        cross_fade_duration=cross_fade_duration,
        nfe_step=nfe_step,
        speed=speed,
        show_info=show_info,
        progress=gr.Progress(),
    )

    # Remove silence
    if remove_silence:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            sf.write(f.name, final_wave, final_sample_rate)
            remove_silence_for_generated_wav(f.name)
            final_wave, _ = torchaudio.load(f.name)
        final_wave = final_wave.squeeze().cpu().numpy()

    # Save the spectrogram
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
        spectrogram_path = tmp_spectrogram.name
        save_spectrogram(combined_spectrogram, spectrogram_path)

    return (final_sample_rate, final_wave), spectrogram_path, ref_text


with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits

* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
""")

with gr.Blocks() as app_tts:
    gr.Markdown("# Batched TTS")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
    generate_btn = gr.Button("Synthesize", variant="primary")
    with gr.Accordion("Advanced Settings", open=False):
        ref_text_input = gr.Textbox(
            label="Reference Text",
            info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
            lines=2,
        )
        remove_silence = gr.Checkbox(
            label="Remove Silences",
            info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
            value=False,
        )
        speed_slider = gr.Slider(
            label="Speed",
            minimum=0.3,
            maximum=2.0,
            value=1.0,
            step=0.1,
            info="Adjust the speed of the audio.",
        )
        nfe_slider = gr.Slider(
            label="NFE Steps",
            minimum=4,
            maximum=64,
            value=32,
            step=2,
            info="Set the number of denoising steps.",
        )
        cross_fade_duration_slider = gr.Slider(
            label="Cross-Fade Duration (s)",
            minimum=0.0,
            maximum=1.0,
            value=0.15,
            step=0.01,
            info="Set the duration of the cross-fade between audio clips.",
        )

    audio_output = gr.Audio(label="Synthesized Audio")
    spectrogram_output = gr.Image(label="Spectrogram")

    @gpu_decorator
    def basic_tts(
        ref_audio_input,
        ref_text_input,
        gen_text_input,
        remove_silence,
        cross_fade_duration_slider,
        nfe_slider,
        speed_slider,
    ):
        audio_out, spectrogram_path, ref_text_out = infer(
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            tts_model_choice,
            remove_silence,
            cross_fade_duration=cross_fade_duration_slider,
            nfe_step=nfe_slider,
            speed=speed_slider,
        )
        return audio_out, spectrogram_path, ref_text_out

    generate_btn.click(
        basic_tts,
        inputs=[
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            remove_silence,
            cross_fade_duration_slider,
            nfe_slider,
            speed_slider,
        ],
        outputs=[audio_output, spectrogram_output, ref_text_input],
    )
with gr.Blocks() as app_multistyle:
    gr.Markdown("# Multiple Speech-Type Generation")
    # ... [Keep original multistyle interface unchanged] ...

with gr.Blocks() as app_podcast:
    gr.Markdown("# Podcast Generation")
    with gr.Row():
        with gr.Column():
            speaker1_name = gr.Textbox(label="Speaker 1 Name", placeholder="e.g. John")
            ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
            ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
        with gr.Column():
            speaker2_name = gr.Textbox(label="Speaker 2 Name", placeholder="e.g. Sarah") 
            ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
            ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)

    script_input = gr.Textbox(
        label="Podcast Script",
        lines=10,
        placeholder="Format:\nSpeaker1: Hello...\nSpeaker2: Hi...\nSpeaker1: How are you?..."
    )

    with gr.Row():
        podcast_model_choice = gr.Radio(
            choices=["F5-TTS", "E2-TTS"],
            label="TTS Model",
            value="F5-TTS"
        )
        podcast_remove_silence = gr.Checkbox(
            label="Remove Silences Between Dialogues",
            value=True
        )

    generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
    podcast_output = gr.Audio(label="Generated Podcast", autoplay=True)

    def generate_podcast(
        script,
        speaker1,
        ref_audio1,
        ref_text1,
        speaker2,
        ref_audio2,
        ref_text2,
        model,
        remove_silence
    ):
        # Validate inputs
        if not all([speaker1, speaker2]):
            raise gr.Error("Both speaker names must be provided")
        if not ref_audio1 or not ref_audio2:
            raise gr.Error("Both reference audios must be provided")

        # Split script into speaker blocks
        pattern = re.compile(f"({re.escape(speaker1)}:|{re.escape(speaker2)}:)")
        speaker_blocks = pattern.split(script)[1:]
        
        generated_audio_segments = []
        current_speaker = None

        for i in range(0, len(speaker_blocks), 2):
            speaker_tag = speaker_blocks[i].strip(":")
            text = speaker_blocks[i+1].strip()
            
            # Select reference based on speaker
            if speaker_tag == speaker1:
                ref_audio = ref_audio1
                ref_text = ref_text1
            elif speaker_tag == speaker2:
                ref_audio = ref_audio2
                ref_text = ref_text2
            else:
                continue

            # Generate audio for segment
            audio_result, spectrogram, ref_text_out = infer(
                ref_audio,
                ref_text,
                text,
                model,
                remove_silence,
                cross_fade_duration=0.15,
                nfe_step=32,
                speed=1.0
            )
            sr, audio_data = audio_result
            generated_audio_segments.append(audio_data)

        # Combine all audio segments
        if generated_audio_segments:
            final_audio = np.concatenate(generated_audio_segments)
            return (target_sample_rate, final_audio)
        return None

    generate_podcast_btn.click(
        generate_podcast,
        inputs=[
            script_input,
            speaker1_name,
            ref_audio_input1,
            ref_text_input1,
            speaker2_name,
            ref_audio_input2,
            ref_text_input2,
            podcast_model_choice,
            podcast_remove_silence
        ],
        outputs=podcast_output
    )

with gr.Blocks() as app_chat:
    gr.Markdown("# Voice Chat")
    # ... [Keep original voice chat interface unchanged] ...

with gr.Blocks() as app:
    gr.Markdown(f"""
# E2/F5 TTS
{"Local web UI for [F5 TTS](https://github.com/SWivid/F5-TTS)" if not USING_SPACES else "Online demo for [F5-TTS](https://github.com/SWivid/F5-TTS)"}
""")
    
    with gr.Row():
        if not USING_SPACES:
            choose_tts_model = gr.Radio(
                choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"],
                label="TTS Model",
                value=DEFAULT_TTS_MODEL
            )
        else:
            choose_tts_model = gr.Radio(
                choices=[DEFAULT_TTS_MODEL, "E2-TTS"],
                label="TTS Model",
                value=DEFAULT_TTS_MODEL
            )
        
        custom_ckpt_path = gr.Dropdown(
            choices=[DEFAULT_TTS_MODEL_CFG[0]],
            value=load_last_used_custom()[0],
            allow_custom_value=True,
            label="Model Path",
            visible=False
        )
        custom_vocab_path = gr.Dropdown(
            choices=[DEFAULT_TTS_MODEL_CFG[1]],
            value=load_last_used_custom()[1],
            allow_custom_value=True,
            label="Vocab Path",
            visible=False
        )
        custom_model_cfg = gr.Dropdown(
            choices=[DEFAULT_TTS_MODEL_CFG[2]],
            value=load_last_used_custom()[2],
            allow_custom_value=True,
            label="Model Config",
            visible=False
        )

    choose_tts_model.change(
        switch_tts_model,
        inputs=[choose_tts_model],
        outputs=[custom_ckpt_path, custom_vocab_path, custom_model_cfg]
    )
    
    gr.TabbedInterface(
        [app_tts, app_podcast, app_multistyle, app_chat, app_credits],
        ["Basic TTS", "Podcast", "Multi-Style", "Voice Chat", "Credits"],
    )

@click.command()
@click.option("--port", "-p", default=None, type=int)
@click.option("--host", "-H", default=None)
@click.option("--share", "-s", default=True, is_flag=True)
@click.option("--api", "-a", default=True, is_flag=True)
@click.option("--root_path", "-r", default=None)
def main(port, host, share, api, root_path):
    global app
    print("Launching app...")
    app.queue(api_open=api).launch(
        server_name=host,
        server_port=port,
        share=share,
        show_api=api,
        root_path=root_path
    )

if __name__ == "__main__":
    if not USING_SPACES:
        main()
    else:
        app.queue().launch()