Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import os | |
from pathlib import Path | |
import json | |
from romatch.benchmarks import ScanNetBenchmark | |
from romatch.benchmarks import Mega1500PoseLibBenchmark, ScanNetPoselibBenchmark | |
from romatch.benchmarks import MegaDepthPoseEstimationBenchmark | |
def test_mega_8_scenes(model, name): | |
mega_8_scenes_benchmark = MegaDepthPoseEstimationBenchmark("data/megadepth", | |
scene_names=['mega_8_scenes_0019_0.1_0.3.npz', | |
'mega_8_scenes_0025_0.1_0.3.npz', | |
'mega_8_scenes_0021_0.1_0.3.npz', | |
'mega_8_scenes_0008_0.1_0.3.npz', | |
'mega_8_scenes_0032_0.1_0.3.npz', | |
'mega_8_scenes_1589_0.1_0.3.npz', | |
'mega_8_scenes_0063_0.1_0.3.npz', | |
'mega_8_scenes_0024_0.1_0.3.npz', | |
'mega_8_scenes_0019_0.3_0.5.npz', | |
'mega_8_scenes_0025_0.3_0.5.npz', | |
'mega_8_scenes_0021_0.3_0.5.npz', | |
'mega_8_scenes_0008_0.3_0.5.npz', | |
'mega_8_scenes_0032_0.3_0.5.npz', | |
'mega_8_scenes_1589_0.3_0.5.npz', | |
'mega_8_scenes_0063_0.3_0.5.npz', | |
'mega_8_scenes_0024_0.3_0.5.npz']) | |
mega_8_scenes_results = mega_8_scenes_benchmark.benchmark(model, model_name=name) | |
print(mega_8_scenes_results) | |
json.dump(mega_8_scenes_results, open(f"results/mega_8_scenes_{name}.json", "w")) | |
def test_mega1500(model, name): | |
mega1500_benchmark = MegaDepthPoseEstimationBenchmark("data/megadepth") | |
mega1500_results = mega1500_benchmark.benchmark(model, model_name=name) | |
json.dump(mega1500_results, open(f"results/mega1500_{name}.json", "w")) | |
def test_mega1500_poselib(model, name): | |
#model.exact_softmax = True | |
mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 1) | |
mega1500_results = mega1500_benchmark.benchmark(model, model_name=name) | |
json.dump(mega1500_results, open(f"results/mega1500_poselib_{name}.json", "w")) | |
def test_mega_8_scenes_poselib(model, name): | |
mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 1, | |
scene_names=['mega_8_scenes_0019_0.1_0.3.npz', | |
'mega_8_scenes_0025_0.1_0.3.npz', | |
'mega_8_scenes_0021_0.1_0.3.npz', | |
'mega_8_scenes_0008_0.1_0.3.npz', | |
'mega_8_scenes_0032_0.1_0.3.npz', | |
'mega_8_scenes_1589_0.1_0.3.npz', | |
'mega_8_scenes_0063_0.1_0.3.npz', | |
'mega_8_scenes_0024_0.1_0.3.npz', | |
'mega_8_scenes_0019_0.3_0.5.npz', | |
'mega_8_scenes_0025_0.3_0.5.npz', | |
'mega_8_scenes_0021_0.3_0.5.npz', | |
'mega_8_scenes_0008_0.3_0.5.npz', | |
'mega_8_scenes_0032_0.3_0.5.npz', | |
'mega_8_scenes_1589_0.3_0.5.npz', | |
'mega_8_scenes_0063_0.3_0.5.npz', | |
'mega_8_scenes_0024_0.3_0.5.npz']) | |
mega1500_results = mega1500_benchmark.benchmark(model, model_name=name) | |
json.dump(mega1500_results, open(f"results/mega_8_scenes_poselib_{name}.json", "w")) | |
def test_scannet_poselib(model, name): | |
scannet_benchmark = ScanNetPoselibBenchmark("data/scannet") | |
scannet_results = scannet_benchmark.benchmark(model) | |
json.dump(scannet_results, open(f"results/scannet_{name}.json", "w")) | |
def test_scannet(model, name): | |
scannet_benchmark = ScanNetBenchmark("data/scannet") | |
scannet_results = scannet_benchmark.benchmark(model) | |
json.dump(scannet_results, open(f"results/scannet_{name}.json", "w")) | |
if __name__ == "__main__": | |
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations | |
os.environ["OMP_NUM_THREADS"] = "16" | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
from romatch import tiny_roma_v1_outdoor | |
experiment_name = Path(__file__).stem | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = tiny_roma_v1_outdoor(device) | |
#test_mega1500_poselib(model, experiment_name) | |
test_mega_8_scenes_poselib(model, experiment_name) | |