import torch import os from pathlib import Path import json from romatch.benchmarks import ScanNetBenchmark from romatch.benchmarks import Mega1500PoseLibBenchmark, ScanNetPoselibBenchmark from romatch.benchmarks import MegaDepthPoseEstimationBenchmark def test_mega_8_scenes(model, name): mega_8_scenes_benchmark = MegaDepthPoseEstimationBenchmark("data/megadepth", scene_names=['mega_8_scenes_0019_0.1_0.3.npz', 'mega_8_scenes_0025_0.1_0.3.npz', 'mega_8_scenes_0021_0.1_0.3.npz', 'mega_8_scenes_0008_0.1_0.3.npz', 'mega_8_scenes_0032_0.1_0.3.npz', 'mega_8_scenes_1589_0.1_0.3.npz', 'mega_8_scenes_0063_0.1_0.3.npz', 'mega_8_scenes_0024_0.1_0.3.npz', 'mega_8_scenes_0019_0.3_0.5.npz', 'mega_8_scenes_0025_0.3_0.5.npz', 'mega_8_scenes_0021_0.3_0.5.npz', 'mega_8_scenes_0008_0.3_0.5.npz', 'mega_8_scenes_0032_0.3_0.5.npz', 'mega_8_scenes_1589_0.3_0.5.npz', 'mega_8_scenes_0063_0.3_0.5.npz', 'mega_8_scenes_0024_0.3_0.5.npz']) mega_8_scenes_results = mega_8_scenes_benchmark.benchmark(model, model_name=name) print(mega_8_scenes_results) json.dump(mega_8_scenes_results, open(f"results/mega_8_scenes_{name}.json", "w")) def test_mega1500(model, name): mega1500_benchmark = MegaDepthPoseEstimationBenchmark("data/megadepth") mega1500_results = mega1500_benchmark.benchmark(model, model_name=name) json.dump(mega1500_results, open(f"results/mega1500_{name}.json", "w")) def test_mega1500_poselib(model, name): #model.exact_softmax = True mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 1) mega1500_results = mega1500_benchmark.benchmark(model, model_name=name) json.dump(mega1500_results, open(f"results/mega1500_poselib_{name}.json", "w")) def test_mega_8_scenes_poselib(model, name): mega1500_benchmark = Mega1500PoseLibBenchmark("data/megadepth", num_ransac_iter = 1, test_every = 1, scene_names=['mega_8_scenes_0019_0.1_0.3.npz', 'mega_8_scenes_0025_0.1_0.3.npz', 'mega_8_scenes_0021_0.1_0.3.npz', 'mega_8_scenes_0008_0.1_0.3.npz', 'mega_8_scenes_0032_0.1_0.3.npz', 'mega_8_scenes_1589_0.1_0.3.npz', 'mega_8_scenes_0063_0.1_0.3.npz', 'mega_8_scenes_0024_0.1_0.3.npz', 'mega_8_scenes_0019_0.3_0.5.npz', 'mega_8_scenes_0025_0.3_0.5.npz', 'mega_8_scenes_0021_0.3_0.5.npz', 'mega_8_scenes_0008_0.3_0.5.npz', 'mega_8_scenes_0032_0.3_0.5.npz', 'mega_8_scenes_1589_0.3_0.5.npz', 'mega_8_scenes_0063_0.3_0.5.npz', 'mega_8_scenes_0024_0.3_0.5.npz']) mega1500_results = mega1500_benchmark.benchmark(model, model_name=name) json.dump(mega1500_results, open(f"results/mega_8_scenes_poselib_{name}.json", "w")) def test_scannet_poselib(model, name): scannet_benchmark = ScanNetPoselibBenchmark("data/scannet") scannet_results = scannet_benchmark.benchmark(model) json.dump(scannet_results, open(f"results/scannet_{name}.json", "w")) def test_scannet(model, name): scannet_benchmark = ScanNetBenchmark("data/scannet") scannet_results = scannet_benchmark.benchmark(model) json.dump(scannet_results, open(f"results/scannet_{name}.json", "w")) if __name__ == "__main__": os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations os.environ["OMP_NUM_THREADS"] = "16" torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn from romatch import tiny_roma_v1_outdoor experiment_name = Path(__file__).stem device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = tiny_roma_v1_outdoor(device) #test_mega1500_poselib(model, experiment_name) test_mega_8_scenes_poselib(model, experiment_name)