Spaces:
dylanebert
/
Running on Zero

EDGS / source /corr_init.py
Olga
Initial commit
5f9d349
import sys
sys.path.append('../')
sys.path.append("../submodules")
sys.path.append('../submodules/RoMa')
from matplotlib import pyplot as plt
from PIL import Image
import torch
import numpy as np
#from tqdm import tqdm_notebook as tqdm
from tqdm import tqdm
from scipy.cluster.vq import kmeans, vq
from scipy.spatial.distance import cdist
import torch.nn.functional as F
from romatch import roma_outdoor, roma_indoor
from utils.sh_utils import RGB2SH
from romatch.utils import get_tuple_transform_ops
def pairwise_distances(matrix):
"""
Computes the pairwise Euclidean distances between all vectors in the input matrix.
Args:
matrix (torch.Tensor): Input matrix of shape [N, D], where N is the number of vectors and D is the dimensionality.
Returns:
torch.Tensor: Pairwise distance matrix of shape [N, N].
"""
# Compute squared pairwise distances
squared_diff = torch.cdist(matrix, matrix, p=2)
return squared_diff
def k_closest_vectors(matrix, k):
"""
Finds the k-closest vectors for each vector in the input matrix based on Euclidean distance.
Args:
matrix (torch.Tensor): Input matrix of shape [N, D], where N is the number of vectors and D is the dimensionality.
k (int): Number of closest vectors to return for each vector.
Returns:
torch.Tensor: Indices of the k-closest vectors for each vector, excluding the vector itself.
"""
# Compute pairwise distances
distances = pairwise_distances(matrix)
# For each vector, sort distances and get the indices of the k-closest vectors (excluding itself)
# Set diagonal distances to infinity to exclude the vector itself from the nearest neighbors
distances.fill_diagonal_(float('inf'))
# Get the indices of the k smallest distances (k-closest vectors)
_, indices = torch.topk(distances, k, largest=False, dim=1)
return indices
def select_cameras_kmeans(cameras, K):
"""
Selects K cameras from a set using K-means clustering.
Args:
cameras: NumPy array of shape (N, 16), representing N cameras with their 4x4 homogeneous matrices flattened.
K: Number of clusters (cameras to select).
Returns:
selected_indices: List of indices of the cameras closest to the cluster centers.
"""
# Ensure input is a NumPy array
if not isinstance(cameras, np.ndarray):
cameras = np.asarray(cameras)
if cameras.shape[1] != 16:
raise ValueError("Each camera must have 16 values corresponding to a flattened 4x4 matrix.")
# Perform K-means clustering
cluster_centers, _ = kmeans(cameras, K)
# Assign each camera to a cluster and find distances to cluster centers
cluster_assignments, _ = vq(cameras, cluster_centers)
# Find the camera nearest to each cluster center
selected_indices = []
for k in range(K):
cluster_members = cameras[cluster_assignments == k]
distances = cdist([cluster_centers[k]], cluster_members)[0]
nearest_camera_idx = np.where(cluster_assignments == k)[0][np.argmin(distances)]
selected_indices.append(nearest_camera_idx)
return selected_indices
def compute_warp_and_confidence(viewpoint_cam1, viewpoint_cam2, roma_model, device="cuda", verbose=False, output_dict={}):
"""
Computes the warp and confidence between two viewpoint cameras using the roma_model.
Args:
viewpoint_cam1: Source viewpoint camera.
viewpoint_cam2: Target viewpoint camera.
roma_model: Pre-trained Roma model for correspondence matching.
device: Device to run the computation on.
verbose: If True, displays the images.
Returns:
certainty: Confidence tensor.
warp: Warp tensor.
imB: Processed image B as numpy array.
"""
# Prepare images
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8))
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8))
if verbose:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 8))
cax1 = ax[0].imshow(imA)
ax[0].set_title("Image 1")
cax2 = ax[1].imshow(imB)
ax[1].set_title("Image 2")
fig.colorbar(cax1, ax=ax[0])
fig.colorbar(cax2, ax=ax[1])
for axis in ax:
axis.axis('off')
# Save the figure into the dictionary
output_dict[f'image_pair'] = fig
# Transform images
ws, hs = roma_model.w_resized, roma_model.h_resized
test_transform = get_tuple_transform_ops(resize=(hs, ws), normalize=True)
im_A, im_B = test_transform((imA, imB))
batch = {"im_A": im_A[None].to(device), "im_B": im_B[None].to(device)}
# Forward pass through Roma model
corresps = roma_model.forward(batch) if not roma_model.symmetric else roma_model.forward_symmetric(batch)
finest_scale = 1
hs, ws = roma_model.upsample_res if roma_model.upsample_preds else (hs, ws)
# Process certainty and warp
certainty = corresps[finest_scale]["certainty"]
im_A_to_im_B = corresps[finest_scale]["flow"]
if roma_model.attenuate_cert:
low_res_certainty = F.interpolate(
corresps[16]["certainty"], size=(hs, ws), align_corners=False, mode="bilinear"
)
certainty -= 0.5 * low_res_certainty * (low_res_certainty < 0)
# Upsample predictions if needed
if roma_model.upsample_preds:
im_A_to_im_B = F.interpolate(
im_A_to_im_B, size=(hs, ws), align_corners=False, mode="bilinear"
)
certainty = F.interpolate(
certainty, size=(hs, ws), align_corners=False, mode="bilinear"
)
# Convert predictions to final format
im_A_to_im_B = im_A_to_im_B.permute(0, 2, 3, 1)
im_A_coords = torch.stack(torch.meshgrid(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
indexing='ij'
), dim=0).permute(1, 2, 0).unsqueeze(0).expand(im_A_to_im_B.size(0), -1, -1, -1)
warp = torch.cat((im_A_coords, im_A_to_im_B), dim=-1)
certainty = certainty.sigmoid()
return certainty[0, 0], warp[0], np.array(imB)
def resize_batch(tensors_3d, tensors_4d, target_shape):
"""
Resizes a batch of tensors with shapes [B, H, W] and [B, H, W, 4] to the target spatial dimensions.
Args:
tensors_3d: Tensor of shape [B, H, W].
tensors_4d: Tensor of shape [B, H, W, 4].
target_shape: Tuple (target_H, target_W) specifying the target spatial dimensions.
Returns:
resized_tensors_3d: Tensor of shape [B, target_H, target_W].
resized_tensors_4d: Tensor of shape [B, target_H, target_W, 4].
"""
target_H, target_W = target_shape
# Resize [B, H, W] tensor
resized_tensors_3d = F.interpolate(
tensors_3d.unsqueeze(1), size=(target_H, target_W), mode="bilinear", align_corners=False
).squeeze(1)
# Resize [B, H, W, 4] tensor
B, _, _, C = tensors_4d.shape
resized_tensors_4d = F.interpolate(
tensors_4d.permute(0, 3, 1, 2), size=(target_H, target_W), mode="bilinear", align_corners=False
).permute(0, 2, 3, 1)
return resized_tensors_3d, resized_tensors_4d
def aggregate_confidences_and_warps(viewpoint_stack, closest_indices, roma_model, source_idx, verbose=False, output_dict={}):
"""
Aggregates confidences and warps by iterating over the nearest neighbors of the source viewpoint.
Args:
viewpoint_stack: Stack of viewpoint cameras.
closest_indices: Indices of the nearest neighbors for each viewpoint.
roma_model: Pre-trained Roma model.
source_idx: Index of the source viewpoint.
verbose: If True, displays intermediate results.
Returns:
certainties_max: Aggregated maximum confidences.
warps_max: Aggregated warps corresponding to maximum confidences.
certainties_max_idcs: Pixel-wise index of the image from which we taken the best matching.
imB_compound: List of the neighboring images.
"""
certainties_all, warps_all, imB_compound = [], [], []
for nn in tqdm(closest_indices[source_idx]):
viewpoint_cam1 = viewpoint_stack[source_idx]
viewpoint_cam2 = viewpoint_stack[nn]
certainty, warp, imB = compute_warp_and_confidence(viewpoint_cam1, viewpoint_cam2, roma_model, verbose=verbose, output_dict=output_dict)
certainties_all.append(certainty)
warps_all.append(warp)
imB_compound.append(imB)
certainties_all = torch.stack(certainties_all, dim=0)
target_shape = imB_compound[0].shape[:2]
if verbose:
print("certainties_all.shape:", certainties_all.shape)
print("torch.stack(warps_all, dim=0).shape:", torch.stack(warps_all, dim=0).shape)
print("target_shape:", target_shape)
certainties_all_resized, warps_all_resized = resize_batch(certainties_all,
torch.stack(warps_all, dim=0),
target_shape
)
if verbose:
print("warps_all_resized.shape:", warps_all_resized.shape)
for n, cert in enumerate(certainties_all):
fig, ax = plt.subplots()
cax = ax.imshow(cert.cpu().numpy(), cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise Confidence")
output_dict[f'certainty_{n}'] = fig
for n, warp in enumerate(warps_all):
fig, ax = plt.subplots()
cax = ax.imshow(warp.cpu().numpy()[:, :, :3], cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise warp")
output_dict[f'warp_resized_{n}'] = fig
for n, cert in enumerate(certainties_all_resized):
fig, ax = plt.subplots()
cax = ax.imshow(cert.cpu().numpy(), cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise Confidence resized")
output_dict[f'certainty_resized_{n}'] = fig
for n, warp in enumerate(warps_all_resized):
fig, ax = plt.subplots()
cax = ax.imshow(warp.cpu().numpy()[:, :, :3], cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise warp resized")
output_dict[f'warp_resized_{n}'] = fig
certainties_max, certainties_max_idcs = torch.max(certainties_all_resized, dim=0)
H, W = certainties_max.shape
warps_max = warps_all_resized[certainties_max_idcs, torch.arange(H).unsqueeze(1), torch.arange(W)]
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imA = np.clip(imA * 255, 0, 255).astype(np.uint8)
return certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all_resized, warps_all_resized
def extract_keypoints_and_colors(imA, imB_compound, certainties_max, certainties_max_idcs, matches, roma_model,
verbose=False, output_dict={}):
"""
Extracts keypoints and corresponding colors from the source image (imA) and multiple target images (imB_compound).
Args:
imA: Source image as a NumPy array (H_A, W_A, C).
imB_compound: List of target images as NumPy arrays [(H_B, W_B, C), ...].
certainties_max: Tensor of pixel-wise maximum confidences.
certainties_max_idcs: Tensor of pixel-wise indices for the best matches.
matches: Matches in normalized coordinates.
roma_model: Roma model instance for keypoint operations.
verbose: if to show intermediate outputs and visualize results
Returns:
kptsA_np: Keypoints in imA in normalized coordinates.
kptsB_np: Keypoints in imB in normalized coordinates.
kptsA_color: Colors of keypoints in imA.
kptsB_color: Colors of keypoints in imB based on certainties_max_idcs.
"""
H_A, W_A, _ = imA.shape
H, W = certainties_max.shape
# Convert matches to pixel coordinates
kptsA, kptsB = roma_model.to_pixel_coordinates(
matches, W_A, H_A, H, W # W, H
)
kptsA_np = kptsA.detach().cpu().numpy()
kptsB_np = kptsB.detach().cpu().numpy()
kptsA_np = kptsA_np[:, [1, 0]]
if verbose:
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(imA)
ax.set_title("Reference image, imA")
output_dict[f'reference_image'] = fig
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(imB_compound[0])
ax.set_title("Image to compare to image, imB_compound")
output_dict[f'imB_compound'] = fig
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(np.flipud(imA))
cax = ax.scatter(kptsA_np[:, 0], H_A - kptsA_np[:, 1], s=.03)
ax.set_title("Keypoints in imA")
ax.set_xlim(0, W_A)
ax.set_ylim(0, H_A)
output_dict[f'kptsA'] = fig
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(np.flipud(imB_compound[0]))
cax = ax.scatter(kptsB_np[:, 0], H_A - kptsB_np[:, 1], s=.03)
ax.set_title("Keypoints in imB")
ax.set_xlim(0, W_A)
ax.set_ylim(0, H_A)
output_dict[f'kptsB'] = fig
# Keypoints are in format (row, column) so the first value is alwain in range [0;height] and second is in range[0;width]
kptsA_np = kptsA.detach().cpu().numpy()
kptsB_np = kptsB.detach().cpu().numpy()
# Extract colors for keypoints in imA (vectorized)
# New experimental version
kptsA_x = np.round(kptsA_np[:, 0] / 1.).astype(int)
kptsA_y = np.round(kptsA_np[:, 1] / 1.).astype(int)
kptsA_color = imA[np.clip(kptsA_x, 0, H - 1), np.clip(kptsA_y, 0, W - 1)]
# Create a composite image from imB_compound
imB_compound_np = np.stack(imB_compound, axis=0)
H_B, W_B, _ = imB_compound[0].shape
# Extract colors for keypoints in imB using certainties_max_idcs
imB_np = imB_compound_np[
certainties_max_idcs.detach().cpu().numpy(),
np.arange(H).reshape(-1, 1),
np.arange(W)
]
if verbose:
print("imB_np.shape:", imB_np.shape)
print("imB_np:", imB_np)
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(np.flipud(imB_np))
cax = ax.scatter(kptsB_np[:, 0], H_A - kptsB_np[:, 1], s=.03)
ax.set_title("np.flipud(imB_np[0]")
ax.set_xlim(0, W_A)
ax.set_ylim(0, H_A)
output_dict[f'np.flipud(imB_np[0]'] = fig
kptsB_x = np.round(kptsB_np[:, 0]).astype(int)
kptsB_y = np.round(kptsB_np[:, 1]).astype(int)
certainties_max_idcs_np = certainties_max_idcs.detach().cpu().numpy()
kptsB_proj_matrices_idx = certainties_max_idcs_np[np.clip(kptsA_x, 0, H - 1), np.clip(kptsA_y, 0, W - 1)]
kptsB_color = imB_compound_np[kptsB_proj_matrices_idx, np.clip(kptsB_y, 0, H - 1), np.clip(kptsB_x, 0, W - 1)]
# Normalize keypoints in both images
kptsA_np[:, 0] = kptsA_np[:, 0] / H * 2.0 - 1.0
kptsA_np[:, 1] = kptsA_np[:, 1] / W * 2.0 - 1.0
kptsB_np[:, 0] = kptsB_np[:, 0] / W_B * 2.0 - 1.0
kptsB_np[:, 1] = kptsB_np[:, 1] / H_B * 2.0 - 1.0
return kptsA_np[:, [1, 0]], kptsB_np, kptsB_proj_matrices_idx, kptsA_color, kptsB_color
def prepare_tensor(input_array, device):
"""
Converts an input array to a torch tensor, clones it, and detaches it for safe computation.
Args:
input_array (array-like): The input array to convert.
device (str or torch.device): The device to move the tensor to.
Returns:
torch.Tensor: A detached tensor clone of the input array on the specified device.
"""
if not isinstance(input_array, torch.Tensor):
return torch.tensor(input_array, dtype=torch.float32).to(device).clone().detach()
return input_array.clone().detach().to(device).to(torch.float32)
def triangulate_points(P1, P2, k1_x, k1_y, k2_x, k2_y, device="cuda"):
"""
Solves for a batch of 3D points given batches of projection matrices and corresponding image points.
Parameters:
- P1, P2: Tensors of projection matrices of size (batch_size, 4, 4) or (4, 4)
- k1_x, k1_y: Tensors of shape (batch_size,)
- k2_x, k2_y: Tensors of shape (batch_size,)
Returns:
- X: A tensor containing the 3D homogeneous coordinates, shape (batch_size, 4)
"""
EPS = 1e-4
# Ensure inputs are tensors
P1 = prepare_tensor(P1, device)
P2 = prepare_tensor(P2, device)
k1_x = prepare_tensor(k1_x, device)
k1_y = prepare_tensor(k1_y, device)
k2_x = prepare_tensor(k2_x, device)
k2_y = prepare_tensor(k2_y, device)
batch_size = k1_x.shape[0]
# Expand P1 and P2 if they are not batched
if P1.ndim == 2:
P1 = P1.unsqueeze(0).expand(batch_size, -1, -1)
if P2.ndim == 2:
P2 = P2.unsqueeze(0).expand(batch_size, -1, -1)
# Extract columns from P1 and P2
P1_0 = P1[:, :, 0] # Shape: (batch_size, 4)
P1_1 = P1[:, :, 1]
P1_2 = P1[:, :, 2]
P2_0 = P2[:, :, 0]
P2_1 = P2[:, :, 1]
P2_2 = P2[:, :, 2]
# Reshape kx and ky to (batch_size, 1)
k1_x = k1_x.view(-1, 1)
k1_y = k1_y.view(-1, 1)
k2_x = k2_x.view(-1, 1)
k2_y = k2_y.view(-1, 1)
# Construct the equations for each batch
# For camera 1
A1 = P1_0 - k1_x * P1_2 # Shape: (batch_size, 4)
A2 = P1_1 - k1_y * P1_2
# For camera 2
A3 = P2_0 - k2_x * P2_2
A4 = P2_1 - k2_y * P2_2
# Stack the equations
A = torch.stack([A1, A2, A3, A4], dim=1) # Shape: (batch_size, 4, 4)
# Right-hand side (constants)
b = -A[:, :, 3] # Shape: (batch_size, 4)
A_reduced = A[:, :, :3] # Coefficients of x, y, z
# Solve using torch.linalg.lstsq (supports batching)
X_xyz = torch.linalg.lstsq(A_reduced, b.unsqueeze(2)).solution.squeeze(2) # Shape: (batch_size, 3)
# Append 1 to get homogeneous coordinates
ones = torch.ones((batch_size, 1), dtype=torch.float32, device=X_xyz.device)
X = torch.cat([X_xyz, ones], dim=1) # Shape: (batch_size, 4)
# Now compute the errors of projections.
seeked_splats_proj1 = (X.unsqueeze(1) @ P1).squeeze(1)
seeked_splats_proj1 = seeked_splats_proj1 / (EPS + seeked_splats_proj1[:, [3]])
seeked_splats_proj2 = (X.unsqueeze(1) @ P2).squeeze(1)
seeked_splats_proj2 = seeked_splats_proj2 / (EPS + seeked_splats_proj2[:, [3]])
proj1_target = torch.concat([k1_x, k1_y], dim=1)
proj2_target = torch.concat([k2_x, k2_y], dim=1)
errors_proj1 = torch.abs(seeked_splats_proj1[:, :2] - proj1_target).sum(1).detach().cpu().numpy()
errors_proj2 = torch.abs(seeked_splats_proj2[:, :2] - proj2_target).sum(1).detach().cpu().numpy()
return X, errors_proj1, errors_proj2
def select_best_keypoints(
NNs_triangulated_points, NNs_errors_proj1, NNs_errors_proj2, device="cuda"):
"""
From all the points fitted to keypoints and corresponding colors from the source image (imA) and multiple target images (imB_compound).
Args:
NNs_triangulated_points: torch tensor with keypoints coordinates (num_nns, num_points, dim). dim can be arbitrary,
usually 3 or 4(for homogeneous representation).
NNs_errors_proj1: numpy array with projection error of the estimated keypoint on the reference frame (num_nns, num_points).
NNs_errors_proj2: numpy array with projection error of the estimated keypoint on the neighbor frame (num_nns, num_points).
Returns:
selected_keypoints: keypoints with the best score.
"""
NNs_errors_proj = np.maximum(NNs_errors_proj1, NNs_errors_proj2)
# Convert indices to PyTorch tensor
indices = torch.from_numpy(np.argmin(NNs_errors_proj, axis=0)).long().to(device)
# Create index tensor for the second dimension
n_indices = torch.arange(NNs_triangulated_points.shape[1]).long().to(device)
# Use advanced indexing to select elements
NNs_triangulated_points_selected = NNs_triangulated_points[indices, n_indices, :] # Shape: [N, k]
return NNs_triangulated_points_selected, np.min(NNs_errors_proj, axis=0)
def init_gaussians_with_corr(gaussians, scene, cfg, device, verbose = False, roma_model=None):
"""
For a given input gaussians and a scene we instantiate a RoMa model(change to indoors if necessary) and process scene
training frames to extract correspondences. Those are used to initialize gaussians
Args:
gaussians: object gaussians of the class GaussianModel that we need to enrich with gaussians.
scene: object of the Scene class.
cfg: configuration. Use init_wC
Returns:
gaussians: inplace transforms object gaussians of the class GaussianModel.
"""
if roma_model is None:
if cfg.roma_model == "indoors":
roma_model = roma_indoor(device=device)
else:
roma_model = roma_outdoor(device=device)
roma_model.upsample_preds = False
roma_model.symmetric = False
M = cfg.matches_per_ref
upper_thresh = roma_model.sample_thresh
scaling_factor = cfg.scaling_factor
expansion_factor = 1
keypoint_fit_error_tolerance = cfg.proj_err_tolerance
visualizations = {}
viewpoint_stack = scene.getTrainCameras().copy()
NUM_REFERENCE_FRAMES = min(cfg.num_refs, len(viewpoint_stack))
NUM_NNS_PER_REFERENCE = min(cfg.nns_per_ref , len(viewpoint_stack))
# Select cameras using K-means
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0)
selected_indices = select_cameras_kmeans(cameras=viewpoint_cam_all.detach().cpu().numpy(), K=NUM_REFERENCE_FRAMES)
selected_indices = sorted(selected_indices)
# Find the k-closest vectors for each vector
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0)
closest_indices = k_closest_vectors(viewpoint_cam_all, NUM_NNS_PER_REFERENCE)
if verbose: print("Indices of k-closest vectors for each vector:\n", closest_indices)
closest_indices_selected = closest_indices[:, :].detach().cpu().numpy()
all_new_xyz = []
all_new_features_dc = []
all_new_features_rest = []
all_new_opacities = []
all_new_scaling = []
all_new_rotation = []
# Run roma_model.match once to kinda initialize the model
with torch.no_grad():
viewpoint_cam1 = viewpoint_stack[0]
viewpoint_cam2 = viewpoint_stack[1]
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8))
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8))
warp, certainty_warp = roma_model.match(imA, imB, device=device)
print("Once run full roma_model.match warp.shape:", warp.shape)
print("Once run full roma_model.match certainty_warp.shape:", certainty_warp.shape)
del warp, certainty_warp
torch.cuda.empty_cache()
for source_idx in tqdm(sorted(selected_indices)):
# 1. Compute keypoints and warping for all the neigboring views
with torch.no_grad():
# Call the aggregation function to get imA and imB_compound
certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all, warps_all = aggregate_confidences_and_warps(
viewpoint_stack=viewpoint_stack,
closest_indices=closest_indices_selected,
roma_model=roma_model,
source_idx=source_idx,
verbose=verbose, output_dict=visualizations
)
# Triangulate keypoints
with torch.no_grad():
matches = warps_max
certainty = certainties_max
certainty = certainty.clone()
certainty[certainty > upper_thresh] = 1
matches, certainty = (
matches.reshape(-1, 4),
certainty.reshape(-1),
)
# Select based on certainty elements with high confidence. These are basically all of
# kptsA_np.
good_samples = torch.multinomial(certainty,
num_samples=min(expansion_factor * M, len(certainty)),
replacement=False)
certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all, warps_all
reference_image_dict = {
"ref_image": imA,
"NNs_images": imB_compound,
"certainties_all": certainties_all,
"warps_all": warps_all,
"triangulated_points": [],
"triangulated_points_errors_proj1": [],
"triangulated_points_errors_proj2": []
}
with torch.no_grad():
for NN_idx in tqdm(range(len(warps_all))):
matches_NN = warps_all[NN_idx].reshape(-1, 4)[good_samples]
# Extract keypoints and colors
kptsA_np, kptsB_np, kptsB_proj_matrices_idcs, kptsA_color, kptsB_color = extract_keypoints_and_colors(
imA, imB_compound, certainties_max, certainties_max_idcs, matches_NN, roma_model
)
proj_matrices_A = viewpoint_stack[source_idx].full_proj_transform
proj_matrices_B = viewpoint_stack[closest_indices_selected[source_idx, NN_idx]].full_proj_transform
triangulated_points, triangulated_points_errors_proj1, triangulated_points_errors_proj2 = triangulate_points(
P1=torch.stack([proj_matrices_A] * M, axis=0),
P2=torch.stack([proj_matrices_B] * M, axis=0),
k1_x=kptsA_np[:M, 0], k1_y=kptsA_np[:M, 1],
k2_x=kptsB_np[:M, 0], k2_y=kptsB_np[:M, 1])
reference_image_dict["triangulated_points"].append(triangulated_points)
reference_image_dict["triangulated_points_errors_proj1"].append(triangulated_points_errors_proj1)
reference_image_dict["triangulated_points_errors_proj2"].append(triangulated_points_errors_proj2)
with torch.no_grad():
NNs_triangulated_points_selected, NNs_triangulated_points_selected_proj_errors = select_best_keypoints(
NNs_triangulated_points=torch.stack(reference_image_dict["triangulated_points"], dim=0),
NNs_errors_proj1=np.stack(reference_image_dict["triangulated_points_errors_proj1"], axis=0),
NNs_errors_proj2=np.stack(reference_image_dict["triangulated_points_errors_proj2"], axis=0))
# 4. Save as gaussians
viewpoint_cam1 = viewpoint_stack[source_idx]
N = len(NNs_triangulated_points_selected)
with torch.no_grad():
new_xyz = NNs_triangulated_points_selected[:, :-1]
all_new_xyz.append(new_xyz) # seeked_splats
all_new_features_dc.append(RGB2SH(torch.tensor(kptsA_color.astype(np.float32) / 255.)).unsqueeze(1))
all_new_features_rest.append(torch.stack([gaussians._features_rest[-1].clone().detach() * 0.] * N, dim=0))
# new version that sets points with large error invisible
# TODO: remove those points instead. However it doesn't affect the performance.
mask_bad_points = torch.tensor(
NNs_triangulated_points_selected_proj_errors > keypoint_fit_error_tolerance,
dtype=torch.float32).unsqueeze(1).to(device)
all_new_opacities.append(torch.stack([gaussians._opacity[-1].clone().detach()] * N, dim=0) * 0. - mask_bad_points * (1e1))
dist_points_to_cam1 = torch.linalg.norm(viewpoint_cam1.camera_center.clone().detach() - new_xyz,
dim=1, ord=2)
#all_new_scaling.append(torch.log(((dist_points_to_cam1) / 1. * scaling_factor).unsqueeze(1).repeat(1, 3)))
all_new_scaling.append(gaussians.scaling_inverse_activation((dist_points_to_cam1 * scaling_factor).unsqueeze(1).repeat(1, 3)))
all_new_rotation.append(torch.stack([gaussians._rotation[-1].clone().detach()] * N, dim=0))
all_new_xyz = torch.cat(all_new_xyz, dim=0)
all_new_features_dc = torch.cat(all_new_features_dc, dim=0)
new_tmp_radii = torch.zeros(all_new_xyz.shape[0])
prune_mask = torch.ones(all_new_xyz.shape[0], dtype=torch.bool)
gaussians.densification_postfix(all_new_xyz[prune_mask].to(device),
all_new_features_dc[prune_mask].to(device),
torch.cat(all_new_features_rest, dim=0)[prune_mask].to(device),
torch.cat(all_new_opacities, dim=0)[prune_mask].to(device),
torch.cat(all_new_scaling, dim=0)[prune_mask].to(device),
torch.cat(all_new_rotation, dim=0)[prune_mask].to(device),
new_tmp_radii[prune_mask].to(device))
return viewpoint_stack, closest_indices_selected, visualizations