Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,364 Bytes
5f9d349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import sys
sys.path.append('../')
sys.path.append("../submodules")
sys.path.append('../submodules/RoMa')
from matplotlib import pyplot as plt
from PIL import Image
import torch
import numpy as np
#from tqdm import tqdm_notebook as tqdm
from tqdm import tqdm
from scipy.cluster.vq import kmeans, vq
from scipy.spatial.distance import cdist
import torch.nn.functional as F
from romatch import roma_outdoor, roma_indoor
from utils.sh_utils import RGB2SH
from romatch.utils import get_tuple_transform_ops
def pairwise_distances(matrix):
"""
Computes the pairwise Euclidean distances between all vectors in the input matrix.
Args:
matrix (torch.Tensor): Input matrix of shape [N, D], where N is the number of vectors and D is the dimensionality.
Returns:
torch.Tensor: Pairwise distance matrix of shape [N, N].
"""
# Compute squared pairwise distances
squared_diff = torch.cdist(matrix, matrix, p=2)
return squared_diff
def k_closest_vectors(matrix, k):
"""
Finds the k-closest vectors for each vector in the input matrix based on Euclidean distance.
Args:
matrix (torch.Tensor): Input matrix of shape [N, D], where N is the number of vectors and D is the dimensionality.
k (int): Number of closest vectors to return for each vector.
Returns:
torch.Tensor: Indices of the k-closest vectors for each vector, excluding the vector itself.
"""
# Compute pairwise distances
distances = pairwise_distances(matrix)
# For each vector, sort distances and get the indices of the k-closest vectors (excluding itself)
# Set diagonal distances to infinity to exclude the vector itself from the nearest neighbors
distances.fill_diagonal_(float('inf'))
# Get the indices of the k smallest distances (k-closest vectors)
_, indices = torch.topk(distances, k, largest=False, dim=1)
return indices
def select_cameras_kmeans(cameras, K):
"""
Selects K cameras from a set using K-means clustering.
Args:
cameras: NumPy array of shape (N, 16), representing N cameras with their 4x4 homogeneous matrices flattened.
K: Number of clusters (cameras to select).
Returns:
selected_indices: List of indices of the cameras closest to the cluster centers.
"""
# Ensure input is a NumPy array
if not isinstance(cameras, np.ndarray):
cameras = np.asarray(cameras)
if cameras.shape[1] != 16:
raise ValueError("Each camera must have 16 values corresponding to a flattened 4x4 matrix.")
# Perform K-means clustering
cluster_centers, _ = kmeans(cameras, K)
# Assign each camera to a cluster and find distances to cluster centers
cluster_assignments, _ = vq(cameras, cluster_centers)
# Find the camera nearest to each cluster center
selected_indices = []
for k in range(K):
cluster_members = cameras[cluster_assignments == k]
distances = cdist([cluster_centers[k]], cluster_members)[0]
nearest_camera_idx = np.where(cluster_assignments == k)[0][np.argmin(distances)]
selected_indices.append(nearest_camera_idx)
return selected_indices
def compute_warp_and_confidence(viewpoint_cam1, viewpoint_cam2, roma_model, device="cuda", verbose=False, output_dict={}):
"""
Computes the warp and confidence between two viewpoint cameras using the roma_model.
Args:
viewpoint_cam1: Source viewpoint camera.
viewpoint_cam2: Target viewpoint camera.
roma_model: Pre-trained Roma model for correspondence matching.
device: Device to run the computation on.
verbose: If True, displays the images.
Returns:
certainty: Confidence tensor.
warp: Warp tensor.
imB: Processed image B as numpy array.
"""
# Prepare images
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8))
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8))
if verbose:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 8))
cax1 = ax[0].imshow(imA)
ax[0].set_title("Image 1")
cax2 = ax[1].imshow(imB)
ax[1].set_title("Image 2")
fig.colorbar(cax1, ax=ax[0])
fig.colorbar(cax2, ax=ax[1])
for axis in ax:
axis.axis('off')
# Save the figure into the dictionary
output_dict[f'image_pair'] = fig
# Transform images
ws, hs = roma_model.w_resized, roma_model.h_resized
test_transform = get_tuple_transform_ops(resize=(hs, ws), normalize=True)
im_A, im_B = test_transform((imA, imB))
batch = {"im_A": im_A[None].to(device), "im_B": im_B[None].to(device)}
# Forward pass through Roma model
corresps = roma_model.forward(batch) if not roma_model.symmetric else roma_model.forward_symmetric(batch)
finest_scale = 1
hs, ws = roma_model.upsample_res if roma_model.upsample_preds else (hs, ws)
# Process certainty and warp
certainty = corresps[finest_scale]["certainty"]
im_A_to_im_B = corresps[finest_scale]["flow"]
if roma_model.attenuate_cert:
low_res_certainty = F.interpolate(
corresps[16]["certainty"], size=(hs, ws), align_corners=False, mode="bilinear"
)
certainty -= 0.5 * low_res_certainty * (low_res_certainty < 0)
# Upsample predictions if needed
if roma_model.upsample_preds:
im_A_to_im_B = F.interpolate(
im_A_to_im_B, size=(hs, ws), align_corners=False, mode="bilinear"
)
certainty = F.interpolate(
certainty, size=(hs, ws), align_corners=False, mode="bilinear"
)
# Convert predictions to final format
im_A_to_im_B = im_A_to_im_B.permute(0, 2, 3, 1)
im_A_coords = torch.stack(torch.meshgrid(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
indexing='ij'
), dim=0).permute(1, 2, 0).unsqueeze(0).expand(im_A_to_im_B.size(0), -1, -1, -1)
warp = torch.cat((im_A_coords, im_A_to_im_B), dim=-1)
certainty = certainty.sigmoid()
return certainty[0, 0], warp[0], np.array(imB)
def resize_batch(tensors_3d, tensors_4d, target_shape):
"""
Resizes a batch of tensors with shapes [B, H, W] and [B, H, W, 4] to the target spatial dimensions.
Args:
tensors_3d: Tensor of shape [B, H, W].
tensors_4d: Tensor of shape [B, H, W, 4].
target_shape: Tuple (target_H, target_W) specifying the target spatial dimensions.
Returns:
resized_tensors_3d: Tensor of shape [B, target_H, target_W].
resized_tensors_4d: Tensor of shape [B, target_H, target_W, 4].
"""
target_H, target_W = target_shape
# Resize [B, H, W] tensor
resized_tensors_3d = F.interpolate(
tensors_3d.unsqueeze(1), size=(target_H, target_W), mode="bilinear", align_corners=False
).squeeze(1)
# Resize [B, H, W, 4] tensor
B, _, _, C = tensors_4d.shape
resized_tensors_4d = F.interpolate(
tensors_4d.permute(0, 3, 1, 2), size=(target_H, target_W), mode="bilinear", align_corners=False
).permute(0, 2, 3, 1)
return resized_tensors_3d, resized_tensors_4d
def aggregate_confidences_and_warps(viewpoint_stack, closest_indices, roma_model, source_idx, verbose=False, output_dict={}):
"""
Aggregates confidences and warps by iterating over the nearest neighbors of the source viewpoint.
Args:
viewpoint_stack: Stack of viewpoint cameras.
closest_indices: Indices of the nearest neighbors for each viewpoint.
roma_model: Pre-trained Roma model.
source_idx: Index of the source viewpoint.
verbose: If True, displays intermediate results.
Returns:
certainties_max: Aggregated maximum confidences.
warps_max: Aggregated warps corresponding to maximum confidences.
certainties_max_idcs: Pixel-wise index of the image from which we taken the best matching.
imB_compound: List of the neighboring images.
"""
certainties_all, warps_all, imB_compound = [], [], []
for nn in tqdm(closest_indices[source_idx]):
viewpoint_cam1 = viewpoint_stack[source_idx]
viewpoint_cam2 = viewpoint_stack[nn]
certainty, warp, imB = compute_warp_and_confidence(viewpoint_cam1, viewpoint_cam2, roma_model, verbose=verbose, output_dict=output_dict)
certainties_all.append(certainty)
warps_all.append(warp)
imB_compound.append(imB)
certainties_all = torch.stack(certainties_all, dim=0)
target_shape = imB_compound[0].shape[:2]
if verbose:
print("certainties_all.shape:", certainties_all.shape)
print("torch.stack(warps_all, dim=0).shape:", torch.stack(warps_all, dim=0).shape)
print("target_shape:", target_shape)
certainties_all_resized, warps_all_resized = resize_batch(certainties_all,
torch.stack(warps_all, dim=0),
target_shape
)
if verbose:
print("warps_all_resized.shape:", warps_all_resized.shape)
for n, cert in enumerate(certainties_all):
fig, ax = plt.subplots()
cax = ax.imshow(cert.cpu().numpy(), cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise Confidence")
output_dict[f'certainty_{n}'] = fig
for n, warp in enumerate(warps_all):
fig, ax = plt.subplots()
cax = ax.imshow(warp.cpu().numpy()[:, :, :3], cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise warp")
output_dict[f'warp_resized_{n}'] = fig
for n, cert in enumerate(certainties_all_resized):
fig, ax = plt.subplots()
cax = ax.imshow(cert.cpu().numpy(), cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise Confidence resized")
output_dict[f'certainty_resized_{n}'] = fig
for n, warp in enumerate(warps_all_resized):
fig, ax = plt.subplots()
cax = ax.imshow(warp.cpu().numpy()[:, :, :3], cmap='viridis')
fig.colorbar(cax, ax=ax)
ax.set_title("Pixel-wise warp resized")
output_dict[f'warp_resized_{n}'] = fig
certainties_max, certainties_max_idcs = torch.max(certainties_all_resized, dim=0)
H, W = certainties_max.shape
warps_max = warps_all_resized[certainties_max_idcs, torch.arange(H).unsqueeze(1), torch.arange(W)]
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imA = np.clip(imA * 255, 0, 255).astype(np.uint8)
return certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all_resized, warps_all_resized
def extract_keypoints_and_colors(imA, imB_compound, certainties_max, certainties_max_idcs, matches, roma_model,
verbose=False, output_dict={}):
"""
Extracts keypoints and corresponding colors from the source image (imA) and multiple target images (imB_compound).
Args:
imA: Source image as a NumPy array (H_A, W_A, C).
imB_compound: List of target images as NumPy arrays [(H_B, W_B, C), ...].
certainties_max: Tensor of pixel-wise maximum confidences.
certainties_max_idcs: Tensor of pixel-wise indices for the best matches.
matches: Matches in normalized coordinates.
roma_model: Roma model instance for keypoint operations.
verbose: if to show intermediate outputs and visualize results
Returns:
kptsA_np: Keypoints in imA in normalized coordinates.
kptsB_np: Keypoints in imB in normalized coordinates.
kptsA_color: Colors of keypoints in imA.
kptsB_color: Colors of keypoints in imB based on certainties_max_idcs.
"""
H_A, W_A, _ = imA.shape
H, W = certainties_max.shape
# Convert matches to pixel coordinates
kptsA, kptsB = roma_model.to_pixel_coordinates(
matches, W_A, H_A, H, W # W, H
)
kptsA_np = kptsA.detach().cpu().numpy()
kptsB_np = kptsB.detach().cpu().numpy()
kptsA_np = kptsA_np[:, [1, 0]]
if verbose:
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(imA)
ax.set_title("Reference image, imA")
output_dict[f'reference_image'] = fig
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(imB_compound[0])
ax.set_title("Image to compare to image, imB_compound")
output_dict[f'imB_compound'] = fig
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(np.flipud(imA))
cax = ax.scatter(kptsA_np[:, 0], H_A - kptsA_np[:, 1], s=.03)
ax.set_title("Keypoints in imA")
ax.set_xlim(0, W_A)
ax.set_ylim(0, H_A)
output_dict[f'kptsA'] = fig
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(np.flipud(imB_compound[0]))
cax = ax.scatter(kptsB_np[:, 0], H_A - kptsB_np[:, 1], s=.03)
ax.set_title("Keypoints in imB")
ax.set_xlim(0, W_A)
ax.set_ylim(0, H_A)
output_dict[f'kptsB'] = fig
# Keypoints are in format (row, column) so the first value is alwain in range [0;height] and second is in range[0;width]
kptsA_np = kptsA.detach().cpu().numpy()
kptsB_np = kptsB.detach().cpu().numpy()
# Extract colors for keypoints in imA (vectorized)
# New experimental version
kptsA_x = np.round(kptsA_np[:, 0] / 1.).astype(int)
kptsA_y = np.round(kptsA_np[:, 1] / 1.).astype(int)
kptsA_color = imA[np.clip(kptsA_x, 0, H - 1), np.clip(kptsA_y, 0, W - 1)]
# Create a composite image from imB_compound
imB_compound_np = np.stack(imB_compound, axis=0)
H_B, W_B, _ = imB_compound[0].shape
# Extract colors for keypoints in imB using certainties_max_idcs
imB_np = imB_compound_np[
certainties_max_idcs.detach().cpu().numpy(),
np.arange(H).reshape(-1, 1),
np.arange(W)
]
if verbose:
print("imB_np.shape:", imB_np.shape)
print("imB_np:", imB_np)
fig, ax = plt.subplots(figsize=(12, 6))
cax = ax.imshow(np.flipud(imB_np))
cax = ax.scatter(kptsB_np[:, 0], H_A - kptsB_np[:, 1], s=.03)
ax.set_title("np.flipud(imB_np[0]")
ax.set_xlim(0, W_A)
ax.set_ylim(0, H_A)
output_dict[f'np.flipud(imB_np[0]'] = fig
kptsB_x = np.round(kptsB_np[:, 0]).astype(int)
kptsB_y = np.round(kptsB_np[:, 1]).astype(int)
certainties_max_idcs_np = certainties_max_idcs.detach().cpu().numpy()
kptsB_proj_matrices_idx = certainties_max_idcs_np[np.clip(kptsA_x, 0, H - 1), np.clip(kptsA_y, 0, W - 1)]
kptsB_color = imB_compound_np[kptsB_proj_matrices_idx, np.clip(kptsB_y, 0, H - 1), np.clip(kptsB_x, 0, W - 1)]
# Normalize keypoints in both images
kptsA_np[:, 0] = kptsA_np[:, 0] / H * 2.0 - 1.0
kptsA_np[:, 1] = kptsA_np[:, 1] / W * 2.0 - 1.0
kptsB_np[:, 0] = kptsB_np[:, 0] / W_B * 2.0 - 1.0
kptsB_np[:, 1] = kptsB_np[:, 1] / H_B * 2.0 - 1.0
return kptsA_np[:, [1, 0]], kptsB_np, kptsB_proj_matrices_idx, kptsA_color, kptsB_color
def prepare_tensor(input_array, device):
"""
Converts an input array to a torch tensor, clones it, and detaches it for safe computation.
Args:
input_array (array-like): The input array to convert.
device (str or torch.device): The device to move the tensor to.
Returns:
torch.Tensor: A detached tensor clone of the input array on the specified device.
"""
if not isinstance(input_array, torch.Tensor):
return torch.tensor(input_array, dtype=torch.float32).to(device).clone().detach()
return input_array.clone().detach().to(device).to(torch.float32)
def triangulate_points(P1, P2, k1_x, k1_y, k2_x, k2_y, device="cuda"):
"""
Solves for a batch of 3D points given batches of projection matrices and corresponding image points.
Parameters:
- P1, P2: Tensors of projection matrices of size (batch_size, 4, 4) or (4, 4)
- k1_x, k1_y: Tensors of shape (batch_size,)
- k2_x, k2_y: Tensors of shape (batch_size,)
Returns:
- X: A tensor containing the 3D homogeneous coordinates, shape (batch_size, 4)
"""
EPS = 1e-4
# Ensure inputs are tensors
P1 = prepare_tensor(P1, device)
P2 = prepare_tensor(P2, device)
k1_x = prepare_tensor(k1_x, device)
k1_y = prepare_tensor(k1_y, device)
k2_x = prepare_tensor(k2_x, device)
k2_y = prepare_tensor(k2_y, device)
batch_size = k1_x.shape[0]
# Expand P1 and P2 if they are not batched
if P1.ndim == 2:
P1 = P1.unsqueeze(0).expand(batch_size, -1, -1)
if P2.ndim == 2:
P2 = P2.unsqueeze(0).expand(batch_size, -1, -1)
# Extract columns from P1 and P2
P1_0 = P1[:, :, 0] # Shape: (batch_size, 4)
P1_1 = P1[:, :, 1]
P1_2 = P1[:, :, 2]
P2_0 = P2[:, :, 0]
P2_1 = P2[:, :, 1]
P2_2 = P2[:, :, 2]
# Reshape kx and ky to (batch_size, 1)
k1_x = k1_x.view(-1, 1)
k1_y = k1_y.view(-1, 1)
k2_x = k2_x.view(-1, 1)
k2_y = k2_y.view(-1, 1)
# Construct the equations for each batch
# For camera 1
A1 = P1_0 - k1_x * P1_2 # Shape: (batch_size, 4)
A2 = P1_1 - k1_y * P1_2
# For camera 2
A3 = P2_0 - k2_x * P2_2
A4 = P2_1 - k2_y * P2_2
# Stack the equations
A = torch.stack([A1, A2, A3, A4], dim=1) # Shape: (batch_size, 4, 4)
# Right-hand side (constants)
b = -A[:, :, 3] # Shape: (batch_size, 4)
A_reduced = A[:, :, :3] # Coefficients of x, y, z
# Solve using torch.linalg.lstsq (supports batching)
X_xyz = torch.linalg.lstsq(A_reduced, b.unsqueeze(2)).solution.squeeze(2) # Shape: (batch_size, 3)
# Append 1 to get homogeneous coordinates
ones = torch.ones((batch_size, 1), dtype=torch.float32, device=X_xyz.device)
X = torch.cat([X_xyz, ones], dim=1) # Shape: (batch_size, 4)
# Now compute the errors of projections.
seeked_splats_proj1 = (X.unsqueeze(1) @ P1).squeeze(1)
seeked_splats_proj1 = seeked_splats_proj1 / (EPS + seeked_splats_proj1[:, [3]])
seeked_splats_proj2 = (X.unsqueeze(1) @ P2).squeeze(1)
seeked_splats_proj2 = seeked_splats_proj2 / (EPS + seeked_splats_proj2[:, [3]])
proj1_target = torch.concat([k1_x, k1_y], dim=1)
proj2_target = torch.concat([k2_x, k2_y], dim=1)
errors_proj1 = torch.abs(seeked_splats_proj1[:, :2] - proj1_target).sum(1).detach().cpu().numpy()
errors_proj2 = torch.abs(seeked_splats_proj2[:, :2] - proj2_target).sum(1).detach().cpu().numpy()
return X, errors_proj1, errors_proj2
def select_best_keypoints(
NNs_triangulated_points, NNs_errors_proj1, NNs_errors_proj2, device="cuda"):
"""
From all the points fitted to keypoints and corresponding colors from the source image (imA) and multiple target images (imB_compound).
Args:
NNs_triangulated_points: torch tensor with keypoints coordinates (num_nns, num_points, dim). dim can be arbitrary,
usually 3 or 4(for homogeneous representation).
NNs_errors_proj1: numpy array with projection error of the estimated keypoint on the reference frame (num_nns, num_points).
NNs_errors_proj2: numpy array with projection error of the estimated keypoint on the neighbor frame (num_nns, num_points).
Returns:
selected_keypoints: keypoints with the best score.
"""
NNs_errors_proj = np.maximum(NNs_errors_proj1, NNs_errors_proj2)
# Convert indices to PyTorch tensor
indices = torch.from_numpy(np.argmin(NNs_errors_proj, axis=0)).long().to(device)
# Create index tensor for the second dimension
n_indices = torch.arange(NNs_triangulated_points.shape[1]).long().to(device)
# Use advanced indexing to select elements
NNs_triangulated_points_selected = NNs_triangulated_points[indices, n_indices, :] # Shape: [N, k]
return NNs_triangulated_points_selected, np.min(NNs_errors_proj, axis=0)
def init_gaussians_with_corr(gaussians, scene, cfg, device, verbose = False, roma_model=None):
"""
For a given input gaussians and a scene we instantiate a RoMa model(change to indoors if necessary) and process scene
training frames to extract correspondences. Those are used to initialize gaussians
Args:
gaussians: object gaussians of the class GaussianModel that we need to enrich with gaussians.
scene: object of the Scene class.
cfg: configuration. Use init_wC
Returns:
gaussians: inplace transforms object gaussians of the class GaussianModel.
"""
if roma_model is None:
if cfg.roma_model == "indoors":
roma_model = roma_indoor(device=device)
else:
roma_model = roma_outdoor(device=device)
roma_model.upsample_preds = False
roma_model.symmetric = False
M = cfg.matches_per_ref
upper_thresh = roma_model.sample_thresh
scaling_factor = cfg.scaling_factor
expansion_factor = 1
keypoint_fit_error_tolerance = cfg.proj_err_tolerance
visualizations = {}
viewpoint_stack = scene.getTrainCameras().copy()
NUM_REFERENCE_FRAMES = min(cfg.num_refs, len(viewpoint_stack))
NUM_NNS_PER_REFERENCE = min(cfg.nns_per_ref , len(viewpoint_stack))
# Select cameras using K-means
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0)
selected_indices = select_cameras_kmeans(cameras=viewpoint_cam_all.detach().cpu().numpy(), K=NUM_REFERENCE_FRAMES)
selected_indices = sorted(selected_indices)
# Find the k-closest vectors for each vector
viewpoint_cam_all = torch.stack([x.world_view_transform.flatten() for x in viewpoint_stack], axis=0)
closest_indices = k_closest_vectors(viewpoint_cam_all, NUM_NNS_PER_REFERENCE)
if verbose: print("Indices of k-closest vectors for each vector:\n", closest_indices)
closest_indices_selected = closest_indices[:, :].detach().cpu().numpy()
all_new_xyz = []
all_new_features_dc = []
all_new_features_rest = []
all_new_opacities = []
all_new_scaling = []
all_new_rotation = []
# Run roma_model.match once to kinda initialize the model
with torch.no_grad():
viewpoint_cam1 = viewpoint_stack[0]
viewpoint_cam2 = viewpoint_stack[1]
imA = viewpoint_cam1.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imB = viewpoint_cam2.original_image.detach().cpu().numpy().transpose(1, 2, 0)
imA = Image.fromarray(np.clip(imA * 255, 0, 255).astype(np.uint8))
imB = Image.fromarray(np.clip(imB * 255, 0, 255).astype(np.uint8))
warp, certainty_warp = roma_model.match(imA, imB, device=device)
print("Once run full roma_model.match warp.shape:", warp.shape)
print("Once run full roma_model.match certainty_warp.shape:", certainty_warp.shape)
del warp, certainty_warp
torch.cuda.empty_cache()
for source_idx in tqdm(sorted(selected_indices)):
# 1. Compute keypoints and warping for all the neigboring views
with torch.no_grad():
# Call the aggregation function to get imA and imB_compound
certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all, warps_all = aggregate_confidences_and_warps(
viewpoint_stack=viewpoint_stack,
closest_indices=closest_indices_selected,
roma_model=roma_model,
source_idx=source_idx,
verbose=verbose, output_dict=visualizations
)
# Triangulate keypoints
with torch.no_grad():
matches = warps_max
certainty = certainties_max
certainty = certainty.clone()
certainty[certainty > upper_thresh] = 1
matches, certainty = (
matches.reshape(-1, 4),
certainty.reshape(-1),
)
# Select based on certainty elements with high confidence. These are basically all of
# kptsA_np.
good_samples = torch.multinomial(certainty,
num_samples=min(expansion_factor * M, len(certainty)),
replacement=False)
certainties_max, warps_max, certainties_max_idcs, imA, imB_compound, certainties_all, warps_all
reference_image_dict = {
"ref_image": imA,
"NNs_images": imB_compound,
"certainties_all": certainties_all,
"warps_all": warps_all,
"triangulated_points": [],
"triangulated_points_errors_proj1": [],
"triangulated_points_errors_proj2": []
}
with torch.no_grad():
for NN_idx in tqdm(range(len(warps_all))):
matches_NN = warps_all[NN_idx].reshape(-1, 4)[good_samples]
# Extract keypoints and colors
kptsA_np, kptsB_np, kptsB_proj_matrices_idcs, kptsA_color, kptsB_color = extract_keypoints_and_colors(
imA, imB_compound, certainties_max, certainties_max_idcs, matches_NN, roma_model
)
proj_matrices_A = viewpoint_stack[source_idx].full_proj_transform
proj_matrices_B = viewpoint_stack[closest_indices_selected[source_idx, NN_idx]].full_proj_transform
triangulated_points, triangulated_points_errors_proj1, triangulated_points_errors_proj2 = triangulate_points(
P1=torch.stack([proj_matrices_A] * M, axis=0),
P2=torch.stack([proj_matrices_B] * M, axis=0),
k1_x=kptsA_np[:M, 0], k1_y=kptsA_np[:M, 1],
k2_x=kptsB_np[:M, 0], k2_y=kptsB_np[:M, 1])
reference_image_dict["triangulated_points"].append(triangulated_points)
reference_image_dict["triangulated_points_errors_proj1"].append(triangulated_points_errors_proj1)
reference_image_dict["triangulated_points_errors_proj2"].append(triangulated_points_errors_proj2)
with torch.no_grad():
NNs_triangulated_points_selected, NNs_triangulated_points_selected_proj_errors = select_best_keypoints(
NNs_triangulated_points=torch.stack(reference_image_dict["triangulated_points"], dim=0),
NNs_errors_proj1=np.stack(reference_image_dict["triangulated_points_errors_proj1"], axis=0),
NNs_errors_proj2=np.stack(reference_image_dict["triangulated_points_errors_proj2"], axis=0))
# 4. Save as gaussians
viewpoint_cam1 = viewpoint_stack[source_idx]
N = len(NNs_triangulated_points_selected)
with torch.no_grad():
new_xyz = NNs_triangulated_points_selected[:, :-1]
all_new_xyz.append(new_xyz) # seeked_splats
all_new_features_dc.append(RGB2SH(torch.tensor(kptsA_color.astype(np.float32) / 255.)).unsqueeze(1))
all_new_features_rest.append(torch.stack([gaussians._features_rest[-1].clone().detach() * 0.] * N, dim=0))
# new version that sets points with large error invisible
# TODO: remove those points instead. However it doesn't affect the performance.
mask_bad_points = torch.tensor(
NNs_triangulated_points_selected_proj_errors > keypoint_fit_error_tolerance,
dtype=torch.float32).unsqueeze(1).to(device)
all_new_opacities.append(torch.stack([gaussians._opacity[-1].clone().detach()] * N, dim=0) * 0. - mask_bad_points * (1e1))
dist_points_to_cam1 = torch.linalg.norm(viewpoint_cam1.camera_center.clone().detach() - new_xyz,
dim=1, ord=2)
#all_new_scaling.append(torch.log(((dist_points_to_cam1) / 1. * scaling_factor).unsqueeze(1).repeat(1, 3)))
all_new_scaling.append(gaussians.scaling_inverse_activation((dist_points_to_cam1 * scaling_factor).unsqueeze(1).repeat(1, 3)))
all_new_rotation.append(torch.stack([gaussians._rotation[-1].clone().detach()] * N, dim=0))
all_new_xyz = torch.cat(all_new_xyz, dim=0)
all_new_features_dc = torch.cat(all_new_features_dc, dim=0)
new_tmp_radii = torch.zeros(all_new_xyz.shape[0])
prune_mask = torch.ones(all_new_xyz.shape[0], dtype=torch.bool)
gaussians.densification_postfix(all_new_xyz[prune_mask].to(device),
all_new_features_dc[prune_mask].to(device),
torch.cat(all_new_features_rest, dim=0)[prune_mask].to(device),
torch.cat(all_new_opacities, dim=0)[prune_mask].to(device),
torch.cat(all_new_scaling, dim=0)[prune_mask].to(device),
torch.cat(all_new_rotation, dim=0)[prune_mask].to(device),
new_tmp_radii[prune_mask].to(device))
return viewpoint_stack, closest_indices_selected, visualizations |