omniscience / app.py
dwb2023's picture
Update app.py
6620629 verified
raw
history blame
11.8 kB
"""
CellVision AI - Intelligent Cell Imaging Analysis
This module provides a Gradio web application for performing intelligent cell imaging analysis
using the PaliGemma model from Google. The app allows users to segment or detect cells in images
and generate descriptive text based on the input image and prompt.
Dependencies:
- gradio
- transformers
- torch
- jax
- flax
- spaces
- PIL
- numpy
- huggingface_hub
"""
import os
import functools
import re
import PIL.Image
import gradio as gr
import numpy as np
import torch
import jax
import jax.numpy as jnp
import flax.linen as nn
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
from huggingface_hub import login
import spaces
# Perform login using the token
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "google/paligemma-3b-mix-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(model_id)
@spaces.GPU
def infer(
image: PIL.Image.Image,
text: str,
max_new_tokens: int
) -> str:
"""
Perform inference using the PaliGemma model.
Args:
image (PIL.Image.Image): Input image.
text (str): Input text prompt.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
str: Generated text based on the input image and prompt.
"""
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
with torch.inference_mode():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
return result[0][len(text):].lstrip("\n")
def parse_segmentation(input_image, input_text):
"""
Parse segmentation output tokens into masks and bounding boxes.
Args:
input_image (PIL.Image.Image): Input image.
input_text (str): Input text specifying entities to segment or detect.
Returns:
tuple: A tuple containing the annotated image and a boolean indicating if annotations are present.
"""
out = infer(input_image, input_text, max_new_tokens=100)
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_img = (
input_image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_img[1])
return annotated_img
### Postprocessing Utils for Segmentation Tokens
_MODEL_PATH = 'vae-oid.npz'
_SEGMENT_DETECT_RE = re.compile(
r'(.*?)' +
r'<loc(\d{4})>' * 4 + r'\s*' +
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
r'\s*([^;<>]+)? ?(?:; )?',
)
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
def _get_params(checkpoint):
"""
Convert PyTorch checkpoint to Flax params.
Args:
checkpoint (dict): PyTorch checkpoint dictionary.
Returns:
dict: Flax parameters.
"""
def transp(kernel):
return np.transpose(kernel, (2, 3, 1, 0))
def conv(name):
return {
'bias': checkpoint[name + '.bias'],
'kernel': transp(checkpoint[name + '.weight']),
}
def resblock(name):
return {
'Conv_0': conv(name + '.0'),
'Conv_1': conv(name + '.2'),
'Conv_2': conv(name + '.4'),
}
return {
'_embeddings': checkpoint['_vq_vae._embedding'],
'Conv_0': conv('decoder.0'),
'ResBlock_0': resblock('decoder.2.net'),
'ResBlock_1': resblock('decoder.3.net'),
'ConvTranspose_0': conv('decoder.4'),
'ConvTranspose_1': conv('decoder.6'),
'ConvTranspose_2': conv('decoder.8'),
'ConvTranspose_3': conv('decoder.10'),
'Conv_1': conv('decoder.12'),
}
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
"""
Get quantized values from codebook indices.
Args:
codebook_indices (jax.numpy.ndarray): Codebook indices.
embeddings (jax.numpy.ndarray): Embeddings.
Returns:
jax.numpy.ndarray: Quantized values.
"""
batch_size, num_tokens = codebook_indices.shape
assert num_tokens == 16, codebook_indices.shape
unused_num_embeddings, embedding_dim = embeddings.shape
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
return encodings
@functools.cache
def _get_reconstruct_masks():
"""
Reconstruct masks from codebook indices.
Returns:
function: A function that expects indices shaped `[B, 16]` of dtype int32, each
ranging from 0 to 127 (inclusive), and returns decoded masks sized
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
"""
class ResBlock(nn.Module):
features: int
@nn.compact
def __call__(self, x):
original_x = x
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
return x + original_x
class Decoder(nn.Module):
"""Upscales quantized vectors to mask."""
@nn.compact
def __call__(self, x):
num_res_blocks = 2
dim = 128
num_upsample_layers = 4
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
x = nn.relu(x)
for _ in range(num_res_blocks):
x = ResBlock(features=dim)(x)
for _ in range(num_upsample_layers):
x = nn.ConvTranspose(
features=dim,
kernel_size=(4, 4),
strides=(2, 2),
padding=2,
transpose_kernel=True,
)(x)
x = nn.relu(x)
dim //= 2
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
return x
def reconstruct_masks(codebook_indices):
"""
Reconstruct masks from codebook indices.
Args:
codebook_indices (jax.numpy.ndarray): Codebook indices.
Returns:
jax.numpy.ndarray: Reconstructed masks.
"""
quantized = _quantized_values_from_codebook_indices(
codebook_indices, params['_embeddings']
)
return Decoder().apply({'params': params}, quantized)
with open(_MODEL_PATH, 'rb') as f:
params = _get_params(dict(np.load(f)))
return jax.jit(reconstruct_masks, backend='cpu')
def extract_objs(text, width, height, unique_labels=False):
"""
Extract objects from text containing "<loc>" and "<seg>" tokens.
Args:
text (str): Input text containing "<loc>" and "<seg>" tokens.
width (int): Width of the image.
height (int): Height of the image.
unique_labels (bool, optional): Whether to enforce unique labels. Defaults to False.
Returns:
list: List of extracted objects.
"""
objs = []
seen = set()
while text:
m = _SEGMENT_DETECT_RE.match(text)
if not m:
break
print("m", m)
gs = list(m.groups())
before = gs.pop(0)
name = gs.pop()
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
seg_indices = gs[4:20]
if seg_indices[0] is None:
mask = None
else:
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
mask = np.zeros([height, width])
if y2 > y1 and x2 > x1:
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
content = m.group()
if before:
objs.append(dict(content=before))
content = content[len(before):]
while unique_labels and name in seen:
name = (name or '') + "'"
seen.add(name)
objs.append(dict(
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
text = text[len(before) + len(content):]
if text:
objs.append(dict(content=text))
return objs
#########
INTRO_TEXT="# 🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
IMAGE_PROMPT="""
Describe the morphological characteristics and visible interactions between different cell types.
Assess the biological context to identify signs of cancer and the presence of antigens.
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Segment/Detect"):
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [["./examples/cart1.jpg", "segment cells"],
["./examples/cart1.jpg", "detect cells"],
["./examples/cart2.jpg", "segment cells"],
["./examples/cart2.jpg", "detect cells"],
["./examples/cart3.jpg", "segment cells"],
["./examples/cart3.jpg", "detect cells"]]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=parse_segmentation,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(type="pil")
text_input = gr.Text(label="Input Text")
text_output = gr.Text(label="Text Output")
chat_btn = gr.Button()
tokens = gr.Slider(
label="Max New Tokens",
info="Set to larger for longer generation.",
minimum=10,
maximum=100,
value=50,
step=10,
)
chat_inputs = [
image,
text_input,
tokens
]
chat_outputs = [
text_output
]
chat_btn.click(
fn=infer,
inputs=chat_inputs,
outputs=chat_outputs,
)
examples = [["./examples/cart1.jpg", IMAGE_PROMPT],
["./examples/cart2.jpg", IMAGE_PROMPT],
["./examples/cart3.jpg", IMAGE_PROMPT]]
gr.Examples(
examples=examples,
inputs=chat_inputs,
)
#########
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)