Spaces:
Runtime error
Runtime error
""" | |
CellVision AI - Intelligent Cell Imaging Analysis | |
This module provides a Gradio web application for performing intelligent cell imaging analysis | |
using the PaliGemma model from Google. The app allows users to segment or detect cells in images | |
and generate descriptive text based on the input image and prompt. | |
Dependencies: | |
- gradio | |
- transformers | |
- torch | |
- jax | |
- flax | |
- spaces | |
- PIL | |
- numpy | |
- huggingface_hub | |
""" | |
import os | |
import functools | |
import re | |
import PIL.Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
import jax | |
import jax.numpy as jnp | |
import flax.linen as nn | |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
from huggingface_hub import login | |
import spaces | |
# Perform login using the token | |
hf_token = os.getenv("HF_TOKEN") | |
login(token=hf_token, add_to_git_credential=True) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_id = "google/paligemma-3b-mix-448" | |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device) | |
processor = PaliGemmaProcessor.from_pretrained(model_id) | |
def infer( | |
image: PIL.Image.Image, | |
text: str, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Perform inference using the PaliGemma model. | |
Args: | |
image (PIL.Image.Image): Input image. | |
text (str): Input text prompt. | |
max_new_tokens (int): Maximum number of new tokens to generate. | |
Returns: | |
str: Generated text based on the input image and prompt. | |
""" | |
inputs = processor(text=text, images=image, return_tensors="pt").to(device) | |
with torch.inference_mode(): | |
generated_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False | |
) | |
result = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
return result[0][len(text):].lstrip("\n") | |
def parse_segmentation(input_image, input_text): | |
""" | |
Parse segmentation output tokens into masks and bounding boxes. | |
Args: | |
input_image (PIL.Image.Image): Input image. | |
input_text (str): Input text specifying entities to segment or detect. | |
Returns: | |
tuple: A tuple containing the annotated image and a boolean indicating if annotations are present. | |
""" | |
out = infer(input_image, input_text, max_new_tokens=100) | |
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True) | |
labels = set(obj.get('name') for obj in objs if obj.get('name')) | |
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)} | |
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs] | |
annotated_img = ( | |
input_image, | |
[ | |
( | |
obj['mask'] if obj.get('mask') is not None else obj['xyxy'], | |
obj['name'] or '', | |
) | |
for obj in objs | |
if 'mask' in obj or 'xyxy' in obj | |
], | |
) | |
has_annotations = bool(annotated_img[1]) | |
return annotated_img | |
### Postprocessing Utils for Segmentation Tokens | |
_MODEL_PATH = 'vae-oid.npz' | |
_SEGMENT_DETECT_RE = re.compile( | |
r'(.*?)' + | |
r'<loc(\d{4})>' * 4 + r'\s*' + | |
'(?:%s)?' % (r'<seg(\d{3})>' * 16) + | |
r'\s*([^;<>]+)? ?(?:; )?', | |
) | |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1'] | |
def _get_params(checkpoint): | |
""" | |
Convert PyTorch checkpoint to Flax params. | |
Args: | |
checkpoint (dict): PyTorch checkpoint dictionary. | |
Returns: | |
dict: Flax parameters. | |
""" | |
def transp(kernel): | |
return np.transpose(kernel, (2, 3, 1, 0)) | |
def conv(name): | |
return { | |
'bias': checkpoint[name + '.bias'], | |
'kernel': transp(checkpoint[name + '.weight']), | |
} | |
def resblock(name): | |
return { | |
'Conv_0': conv(name + '.0'), | |
'Conv_1': conv(name + '.2'), | |
'Conv_2': conv(name + '.4'), | |
} | |
return { | |
'_embeddings': checkpoint['_vq_vae._embedding'], | |
'Conv_0': conv('decoder.0'), | |
'ResBlock_0': resblock('decoder.2.net'), | |
'ResBlock_1': resblock('decoder.3.net'), | |
'ConvTranspose_0': conv('decoder.4'), | |
'ConvTranspose_1': conv('decoder.6'), | |
'ConvTranspose_2': conv('decoder.8'), | |
'ConvTranspose_3': conv('decoder.10'), | |
'Conv_1': conv('decoder.12'), | |
} | |
def _quantized_values_from_codebook_indices(codebook_indices, embeddings): | |
""" | |
Get quantized values from codebook indices. | |
Args: | |
codebook_indices (jax.numpy.ndarray): Codebook indices. | |
embeddings (jax.numpy.ndarray): Embeddings. | |
Returns: | |
jax.numpy.ndarray: Quantized values. | |
""" | |
batch_size, num_tokens = codebook_indices.shape | |
assert num_tokens == 16, codebook_indices.shape | |
unused_num_embeddings, embedding_dim = embeddings.shape | |
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) | |
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) | |
return encodings | |
def _get_reconstruct_masks(): | |
""" | |
Reconstruct masks from codebook indices. | |
Returns: | |
function: A function that expects indices shaped `[B, 16]` of dtype int32, each | |
ranging from 0 to 127 (inclusive), and returns decoded masks sized | |
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1]. | |
""" | |
class ResBlock(nn.Module): | |
features: int | |
def __call__(self, x): | |
original_x = x | |
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) | |
x = nn.relu(x) | |
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) | |
x = nn.relu(x) | |
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x) | |
return x + original_x | |
class Decoder(nn.Module): | |
"""Upscales quantized vectors to mask.""" | |
def __call__(self, x): | |
num_res_blocks = 2 | |
dim = 128 | |
num_upsample_layers = 4 | |
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x) | |
x = nn.relu(x) | |
for _ in range(num_res_blocks): | |
x = ResBlock(features=dim)(x) | |
for _ in range(num_upsample_layers): | |
x = nn.ConvTranspose( | |
features=dim, | |
kernel_size=(4, 4), | |
strides=(2, 2), | |
padding=2, | |
transpose_kernel=True, | |
)(x) | |
x = nn.relu(x) | |
dim //= 2 | |
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x) | |
return x | |
def reconstruct_masks(codebook_indices): | |
""" | |
Reconstruct masks from codebook indices. | |
Args: | |
codebook_indices (jax.numpy.ndarray): Codebook indices. | |
Returns: | |
jax.numpy.ndarray: Reconstructed masks. | |
""" | |
quantized = _quantized_values_from_codebook_indices( | |
codebook_indices, params['_embeddings'] | |
) | |
return Decoder().apply({'params': params}, quantized) | |
with open(_MODEL_PATH, 'rb') as f: | |
params = _get_params(dict(np.load(f))) | |
return jax.jit(reconstruct_masks, backend='cpu') | |
def extract_objs(text, width, height, unique_labels=False): | |
""" | |
Extract objects from text containing "<loc>" and "<seg>" tokens. | |
Args: | |
text (str): Input text containing "<loc>" and "<seg>" tokens. | |
width (int): Width of the image. | |
height (int): Height of the image. | |
unique_labels (bool, optional): Whether to enforce unique labels. Defaults to False. | |
Returns: | |
list: List of extracted objects. | |
""" | |
objs = [] | |
seen = set() | |
while text: | |
m = _SEGMENT_DETECT_RE.match(text) | |
if not m: | |
break | |
print("m", m) | |
gs = list(m.groups()) | |
before = gs.pop(0) | |
name = gs.pop() | |
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] | |
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) | |
seg_indices = gs[4:20] | |
if seg_indices[0] is None: | |
mask = None | |
else: | |
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) | |
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] | |
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) | |
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) | |
mask = np.zeros([height, width]) | |
if y2 > y1 and x2 > x1: | |
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 | |
content = m.group() | |
if before: | |
objs.append(dict(content=before)) | |
content = content[len(before):] | |
while unique_labels and name in seen: | |
name = (name or '') + "'" | |
seen.add(name) | |
objs.append(dict( | |
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) | |
text = text[len(before) + len(content):] | |
if text: | |
objs.append(dict(content=text)) | |
return objs | |
######### | |
INTRO_TEXT="# 🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫" | |
IMAGE_PROMPT=""" | |
Describe the morphological characteristics and visible interactions between different cell types. | |
Assess the biological context to identify signs of cancer and the presence of antigens. | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(INTRO_TEXT) | |
with gr.Tab("Segment/Detect"): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="pil") | |
seg_input = gr.Text(label="Entities to Segment/Detect") | |
with gr.Column(): | |
annotated_image = gr.AnnotatedImage(label="Output") | |
seg_btn = gr.Button("Submit") | |
examples = [["./examples/cart1.jpg", "segment cells"], | |
["./examples/cart1.jpg", "detect cells"], | |
["./examples/cart2.jpg", "segment cells"], | |
["./examples/cart2.jpg", "detect cells"], | |
["./examples/cart3.jpg", "segment cells"], | |
["./examples/cart3.jpg", "detect cells"]] | |
gr.Examples( | |
examples=examples, | |
inputs=[image, seg_input], | |
) | |
seg_inputs = [ | |
image, | |
seg_input | |
] | |
seg_outputs = [ | |
annotated_image | |
] | |
seg_btn.click( | |
fn=parse_segmentation, | |
inputs=seg_inputs, | |
outputs=seg_outputs, | |
) | |
with gr.Tab("Text Generation"): | |
with gr.Column(): | |
image = gr.Image(type="pil") | |
text_input = gr.Text(label="Input Text") | |
text_output = gr.Text(label="Text Output") | |
chat_btn = gr.Button() | |
tokens = gr.Slider( | |
label="Max New Tokens", | |
info="Set to larger for longer generation.", | |
minimum=10, | |
maximum=100, | |
value=50, | |
step=10, | |
) | |
chat_inputs = [ | |
image, | |
text_input, | |
tokens | |
] | |
chat_outputs = [ | |
text_output | |
] | |
chat_btn.click( | |
fn=infer, | |
inputs=chat_inputs, | |
outputs=chat_outputs, | |
) | |
examples = [["./examples/cart1.jpg", IMAGE_PROMPT], | |
["./examples/cart2.jpg", IMAGE_PROMPT], | |
["./examples/cart3.jpg", IMAGE_PROMPT]] | |
gr.Examples( | |
examples=examples, | |
inputs=chat_inputs, | |
) | |
######### | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) |