Spaces:
Runtime error
Runtime error
File size: 11,763 Bytes
a78c4d2 9f9688c 5dae26f a78c4d2 5dae26f a78c4d2 5dae26f 719c202 a78c4d2 5dae26f a2e1737 a78c4d2 5dae26f 68148d0 a78c4d2 a2e1737 5dae26f a78c4d2 5dae26f 9f9688c a78c4d2 9f9688c a78c4d2 9f9688c a78c4d2 9f9688c a78c4d2 6620629 a78c4d2 9f9688c 5dae26f a2e1737 a78c4d2 a2e1737 a78c4d2 a2e1737 a78c4d2 a2e1737 5dae26f a2e1737 a78c4d2 a2e1737 a78c4d2 a2e1737 a78c4d2 a2e1737 5dae26f a78c4d2 a2e1737 5dae26f a78c4d2 5dae26f a78c4d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
"""
CellVision AI - Intelligent Cell Imaging Analysis
This module provides a Gradio web application for performing intelligent cell imaging analysis
using the PaliGemma model from Google. The app allows users to segment or detect cells in images
and generate descriptive text based on the input image and prompt.
Dependencies:
- gradio
- transformers
- torch
- jax
- flax
- spaces
- PIL
- numpy
- huggingface_hub
"""
import os
import functools
import re
import PIL.Image
import gradio as gr
import numpy as np
import torch
import jax
import jax.numpy as jnp
import flax.linen as nn
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
from huggingface_hub import login
import spaces
# Perform login using the token
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "google/paligemma-3b-mix-448"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(model_id)
@spaces.GPU
def infer(
image: PIL.Image.Image,
text: str,
max_new_tokens: int
) -> str:
"""
Perform inference using the PaliGemma model.
Args:
image (PIL.Image.Image): Input image.
text (str): Input text prompt.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
str: Generated text based on the input image and prompt.
"""
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
with torch.inference_mode():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
return result[0][len(text):].lstrip("\n")
def parse_segmentation(input_image, input_text):
"""
Parse segmentation output tokens into masks and bounding boxes.
Args:
input_image (PIL.Image.Image): Input image.
input_text (str): Input text specifying entities to segment or detect.
Returns:
tuple: A tuple containing the annotated image and a boolean indicating if annotations are present.
"""
out = infer(input_image, input_text, max_new_tokens=100)
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_img = (
input_image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_img[1])
return annotated_img
### Postprocessing Utils for Segmentation Tokens
_MODEL_PATH = 'vae-oid.npz'
_SEGMENT_DETECT_RE = re.compile(
r'(.*?)' +
r'<loc(\d{4})>' * 4 + r'\s*' +
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
r'\s*([^;<>]+)? ?(?:; )?',
)
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
def _get_params(checkpoint):
"""
Convert PyTorch checkpoint to Flax params.
Args:
checkpoint (dict): PyTorch checkpoint dictionary.
Returns:
dict: Flax parameters.
"""
def transp(kernel):
return np.transpose(kernel, (2, 3, 1, 0))
def conv(name):
return {
'bias': checkpoint[name + '.bias'],
'kernel': transp(checkpoint[name + '.weight']),
}
def resblock(name):
return {
'Conv_0': conv(name + '.0'),
'Conv_1': conv(name + '.2'),
'Conv_2': conv(name + '.4'),
}
return {
'_embeddings': checkpoint['_vq_vae._embedding'],
'Conv_0': conv('decoder.0'),
'ResBlock_0': resblock('decoder.2.net'),
'ResBlock_1': resblock('decoder.3.net'),
'ConvTranspose_0': conv('decoder.4'),
'ConvTranspose_1': conv('decoder.6'),
'ConvTranspose_2': conv('decoder.8'),
'ConvTranspose_3': conv('decoder.10'),
'Conv_1': conv('decoder.12'),
}
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
"""
Get quantized values from codebook indices.
Args:
codebook_indices (jax.numpy.ndarray): Codebook indices.
embeddings (jax.numpy.ndarray): Embeddings.
Returns:
jax.numpy.ndarray: Quantized values.
"""
batch_size, num_tokens = codebook_indices.shape
assert num_tokens == 16, codebook_indices.shape
unused_num_embeddings, embedding_dim = embeddings.shape
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
return encodings
@functools.cache
def _get_reconstruct_masks():
"""
Reconstruct masks from codebook indices.
Returns:
function: A function that expects indices shaped `[B, 16]` of dtype int32, each
ranging from 0 to 127 (inclusive), and returns decoded masks sized
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
"""
class ResBlock(nn.Module):
features: int
@nn.compact
def __call__(self, x):
original_x = x
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
x = nn.relu(x)
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
return x + original_x
class Decoder(nn.Module):
"""Upscales quantized vectors to mask."""
@nn.compact
def __call__(self, x):
num_res_blocks = 2
dim = 128
num_upsample_layers = 4
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
x = nn.relu(x)
for _ in range(num_res_blocks):
x = ResBlock(features=dim)(x)
for _ in range(num_upsample_layers):
x = nn.ConvTranspose(
features=dim,
kernel_size=(4, 4),
strides=(2, 2),
padding=2,
transpose_kernel=True,
)(x)
x = nn.relu(x)
dim //= 2
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
return x
def reconstruct_masks(codebook_indices):
"""
Reconstruct masks from codebook indices.
Args:
codebook_indices (jax.numpy.ndarray): Codebook indices.
Returns:
jax.numpy.ndarray: Reconstructed masks.
"""
quantized = _quantized_values_from_codebook_indices(
codebook_indices, params['_embeddings']
)
return Decoder().apply({'params': params}, quantized)
with open(_MODEL_PATH, 'rb') as f:
params = _get_params(dict(np.load(f)))
return jax.jit(reconstruct_masks, backend='cpu')
def extract_objs(text, width, height, unique_labels=False):
"""
Extract objects from text containing "<loc>" and "<seg>" tokens.
Args:
text (str): Input text containing "<loc>" and "<seg>" tokens.
width (int): Width of the image.
height (int): Height of the image.
unique_labels (bool, optional): Whether to enforce unique labels. Defaults to False.
Returns:
list: List of extracted objects.
"""
objs = []
seen = set()
while text:
m = _SEGMENT_DETECT_RE.match(text)
if not m:
break
print("m", m)
gs = list(m.groups())
before = gs.pop(0)
name = gs.pop()
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
seg_indices = gs[4:20]
if seg_indices[0] is None:
mask = None
else:
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
mask = np.zeros([height, width])
if y2 > y1 and x2 > x1:
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
content = m.group()
if before:
objs.append(dict(content=before))
content = content[len(before):]
while unique_labels and name in seen:
name = (name or '') + "'"
seen.add(name)
objs.append(dict(
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
text = text[len(before) + len(content):]
if text:
objs.append(dict(content=text))
return objs
#########
INTRO_TEXT="# 🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
IMAGE_PROMPT="""
Describe the morphological characteristics and visible interactions between different cell types.
Assess the biological context to identify signs of cancer and the presence of antigens.
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Segment/Detect"):
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [["./examples/cart1.jpg", "segment cells"],
["./examples/cart1.jpg", "detect cells"],
["./examples/cart2.jpg", "segment cells"],
["./examples/cart2.jpg", "detect cells"],
["./examples/cart3.jpg", "segment cells"],
["./examples/cart3.jpg", "detect cells"]]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=parse_segmentation,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(type="pil")
text_input = gr.Text(label="Input Text")
text_output = gr.Text(label="Text Output")
chat_btn = gr.Button()
tokens = gr.Slider(
label="Max New Tokens",
info="Set to larger for longer generation.",
minimum=10,
maximum=100,
value=50,
step=10,
)
chat_inputs = [
image,
text_input,
tokens
]
chat_outputs = [
text_output
]
chat_btn.click(
fn=infer,
inputs=chat_inputs,
outputs=chat_outputs,
)
examples = [["./examples/cart1.jpg", IMAGE_PROMPT],
["./examples/cart2.jpg", IMAGE_PROMPT],
["./examples/cart3.jpg", IMAGE_PROMPT]]
gr.Examples(
examples=examples,
inputs=chat_inputs,
)
#########
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |