Spaces:
Running
Running
# import examples object from examples.json file | |
import json | |
with open("examples.json", "r") as f: | |
examples = json.load(f) | |
from typing import Dict, Union | |
from gliner import GLiNER | |
import gradio as gr | |
model = GLiNER.from_pretrained("urchade/gliner_medium-v2.1") | |
def merge_entities(entities): | |
if not entities: | |
return [] | |
merged = [] | |
current = entities[0] | |
for next_entity in entities[1:]: | |
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): | |
current['word'] += ' ' + next_entity['word'] | |
current['end'] = next_entity['end'] | |
else: | |
merged.append(current) | |
current = next_entity | |
merged.append(current) | |
return merged | |
def ner( | |
text, labels: str, threshold: float, nested_ner: bool | |
) -> Dict[str, Union[str, int, float]]: | |
labels = labels.split(",") | |
r = { | |
"text": text, | |
"entities": [ | |
{ | |
"entity": entity["label"], | |
"word": entity["text"], | |
"start": entity["start"], | |
"end": entity["end"], | |
"score": 0, | |
} | |
for entity in model.predict_entities( | |
text, labels, flat_ner=not nested_ner, threshold=threshold | |
) | |
], | |
} | |
# r["entities"] = merge_entities(r["entities"]) | |
return r | |
with gr.Blocks(title="GLiNER-medium-v2.1") as demo: | |
gr.Markdown( | |
""" | |
# GLiNER Testbed | |
GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This model has the commercially permissive Apache 2.0 license. | |
## Links | |
* Model: https://huggingface.co/urchade/gliner_medium-v2.1 | |
* All GLiNER models: https://huggingface.co/models?library=gliner | |
* Paper: https://arxiv.org/abs/2311.08526 | |
* Repository: https://github.com/urchade/GLiNER | |
""" | |
) | |
input_text = gr.Textbox( | |
value=examples[0][0], label="Text input", placeholder="Enter your text here" | |
) | |
with gr.Row() as row: | |
labels = gr.Textbox( | |
value=examples[0][1], | |
label="Labels", | |
placeholder="Enter your labels here (comma separated)", | |
scale=2, | |
) | |
threshold = gr.Slider( | |
0, | |
1, | |
value=0.3, | |
step=0.01, | |
label="Threshold", | |
info="Lower the threshold to increase how many entities get predicted.", | |
scale=1, | |
) | |
with gr.Column() as col: | |
nested_ner = gr.Checkbox( | |
value=examples[0][2], | |
label="Nested NER", | |
info="Allow for nested NER?", | |
scale=0, | |
) | |
merged_ent = gr.Checkbox( | |
#value=examples[0][3], | |
value=False, | |
label="Merged Entities", | |
info="Merge adjacent entities?", | |
scale=0, | |
) | |
output = gr.HighlightedText(label="Predicted Entities") | |
submit_btn = gr.Button("Submit") | |
examples = gr.Examples( | |
examples, | |
fn=ner, | |
inputs=[input_text, labels, threshold, nested_ner], | |
outputs=output, | |
cache_examples=True, | |
) | |
# Submitting | |
input_text.submit( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
labels.submit( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
threshold.release( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
submit_btn.click( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
nested_ner.change( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
demo.queue() | |
demo.launch(debug=True) |