Spaces:
Running
Running
File size: 4,208 Bytes
b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 ab78124 b495719 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# import examples object from examples.json file
import json
with open("examples.json", "r") as f:
examples = json.load(f)
from typing import Dict, Union
from gliner import GLiNER
import gradio as gr
model = GLiNER.from_pretrained("urchade/gliner_medium-v2.1")
def merge_entities(entities):
if not entities:
return []
merged = []
current = entities[0]
for next_entity in entities[1:]:
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
current['word'] += ' ' + next_entity['word']
current['end'] = next_entity['end']
else:
merged.append(current)
current = next_entity
merged.append(current)
return merged
def ner(
text, labels: str, threshold: float, nested_ner: bool
) -> Dict[str, Union[str, int, float]]:
labels = labels.split(",")
r = {
"text": text,
"entities": [
{
"entity": entity["label"],
"word": entity["text"],
"start": entity["start"],
"end": entity["end"],
"score": 0,
}
for entity in model.predict_entities(
text, labels, flat_ner=not nested_ner, threshold=threshold
)
],
}
# r["entities"] = merge_entities(r["entities"])
return r
with gr.Blocks(title="GLiNER-medium-v2.1") as demo:
gr.Markdown(
"""
# GLiNER Testbed
GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This model has the commercially permissive Apache 2.0 license.
## Links
* Model: https://huggingface.co/urchade/gliner_medium-v2.1
* All GLiNER models: https://huggingface.co/models?library=gliner
* Paper: https://arxiv.org/abs/2311.08526
* Repository: https://github.com/urchade/GLiNER
"""
)
input_text = gr.Textbox(
value=examples[0][0], label="Text input", placeholder="Enter your text here"
)
with gr.Row() as row:
labels = gr.Textbox(
value=examples[0][1],
label="Labels",
placeholder="Enter your labels here (comma separated)",
scale=2,
)
threshold = gr.Slider(
0,
1,
value=0.3,
step=0.01,
label="Threshold",
info="Lower the threshold to increase how many entities get predicted.",
scale=1,
)
with gr.Column() as col:
nested_ner = gr.Checkbox(
value=examples[0][2],
label="Nested NER",
info="Allow for nested NER?",
scale=0,
)
merged_ent = gr.Checkbox(
#value=examples[0][3],
value=False,
label="Merged Entities",
info="Merge adjacent entities?",
scale=0,
)
output = gr.HighlightedText(label="Predicted Entities")
submit_btn = gr.Button("Submit")
examples = gr.Examples(
examples,
fn=ner,
inputs=[input_text, labels, threshold, nested_ner],
outputs=output,
cache_examples=True,
)
# Submitting
input_text.submit(
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
)
labels.submit(
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
)
threshold.release(
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
)
submit_btn.click(
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
)
nested_ner.change(
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output
)
demo.queue()
demo.launch(debug=True) |