dwani-workshop-old / src /server /main_partial_security.py
sachin
update
9ec8ebc
import argparse
import os
from typing import List, Optional, Dict, Any
from abc import ABC, abstractmethod
import uvicorn
from fastapi import FastAPI, File, HTTPException, Query, Request, UploadFile, Form, Depends, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse, FileResponse
from pydantic import BaseModel, Field
import requests
from time import time
import socket
from functools import lru_cache
from fastapi.background import BackgroundTasks
import tempfile
from enum import Enum
from openai import AsyncOpenAI, OpenAIError
# Assuming these are in your project structure
from config.tts_config import SPEED, ResponseFormat, config as tts_config
from config.logging_config import logger
# FastAPI app setup
app = FastAPI(
title="Dhwani API",
description="A multilingual AI-powered API supporting Indian languages for chat, text-to-speech, audio processing, and transcription.",
version="1.0.0",
redirect_slashes=False,
openapi_tags=[
{"name": "Chat", "description": "Chat-related endpoints"},
{"name": "Audio", "description": "Audio processing and TTS endpoints"},
{"name": "Translation", "description": "Text translation endpoints"},
{"name": "Utility", "description": "General utility endpoints"},
{"name": "PDF", "description": "PDF processing endpoints"},
],
)
# Allowed origins for CORS and IP restriction
ALLOWED_ORIGINS = [
"https://dwani.ai",
"https://*.dwani.ai",
"https://dwani-*.hf.space",
]
# Cache for resolved IPs
@lru_cache(maxsize=100)
def resolve_domain_to_ips(domain: str, ttl: int = 3600) -> set:
"""Resolve a domain to its IP addresses."""
try:
clean_domain = domain.replace("https://", "").replace("*.", "").replace("dwani-*.", "")
ip_addresses = set()
for info in socket.getaddrinfo(clean_domain, None, socket.AF_INET):
ip = info[4][0]
ip_addresses.add(ip)
logger.debug(f"Resolved IPs for {clean_domain}: {ip_addresses}")
return ip_addresses
except socket.gaierror as e:
logger.error(f"Failed to resolve domain {domain}: {str(e)}")
return set()
async def resolve_allowed_ips() -> set:
"""Resolve all allowed origins to their IP addresses."""
allowed_ips = set()
for origin in ALLOWED_ORIGINS:
if "dwani-*.hf.space" in origin:
subdomains = [
"dwani-prod.hf.space",
"dwani-test.hf.space",
"dwani-indic-image-query.hf.space"
"dwani-dwani-server-workshop.hf.space" # Added to allow this subdomain
]
for subdomain in subdomains:
allowed_ips.update(resolve_domain_to_ips(f"https://{subdomain}"))
elif "*.dwani.ai" in origin:
subdomains = ["dwani.ai", "api.dwani.ai", "app.dwani.ai"]
for subdomain in subdomains:
allowed_ips.update(resolve_domain_to_ips(f"https://{subdomain}"))
else:
allowed_ips.update(resolve_domain_to_ips(origin))
logger.info(f"Resolved allowed IPs: {allowed_ips}")
return allowed_ips
# Custom ASGI middleware to restrict requests by client IP
class RestrictIPMiddleware:
def __init__(self, app):
self.app = app
async def __call__(self, scope: dict, receive: callable, send: callable):
if scope["type"] != "http":
await self.app(scope, receive, send)
return
client_ip = scope.get("client", ("unknown", 0))[0]
allowed_ips = await resolve_allowed_ips()
if client_ip == "unknown" or client_ip not in allowed_ips:
logger.warning(f"Blocked request from unauthorized IP: {client_ip}")
await send({
"type": "http.response.start",
"status": 403,
"headers": [(b"content-type", b"application/json")],
})
await send({
"type": "http.response.body",
"body": b'{"detail": "Request from unauthorized IP"}',
})
return
await self.app(scope, receive, send)
# Add middlewares
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://*.hf.space",
"https://dwani.ai",
"https://*.dwani.ai",
"https://dwani-*.hf.space",
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(RestrictIPMiddleware)
# Request/Response Models (unchanged)
class TranscriptionResponse(BaseModel):
text: str = Field(..., description="Transcribed text from the audio")
class Config:
json_schema_extra = {"example": {"text": "Hello, how are you?"}}
class TextGenerationResponse(BaseModel):
text: str = Field(..., description="Generated text response")
class Config:
json_schema_extra = {"example": {"text": "Hi there, I'm doing great!"}}
class AudioProcessingResponse(BaseModel):
result: str = Field(..., description="Processed audio result")
class Config:
json_schema_extra = {"example": {"result": "Processed audio output"}}
class ChatRequest(BaseModel):
prompt: str = Field(..., description="Prompt for chat (max 1000 characters)")
src_lang: str = Field(..., description="Source language code")
tgt_lang: str = Field(..., description="Target language code")
class Config:
json_schema_extra = {
"example": {
"prompt": "Hello, how are you?",
"src_lang": "kan_Knda",
"tgt_lang": "kan_Knda"
}
}
class ChatResponse(BaseModel):
response: str = Field(..., description="Generated chat response")
class Config:
json_schema_extra = {"example": {"response": "Hi there, I'm doing great!"}}
class TranslationRequest(BaseModel):
sentences: List[str] = Field(..., description="List of sentences to translate")
src_lang: str = Field(..., description="Source language code")
tgt_lang: str = Field(..., description="Target language code")
class Config:
json_schema_extra = {
"example": {
"sentences": ["Hello", "How are you?"],
"src_lang": "en",
"tgt_lang": "kan_Knda"
}
}
class TranslationResponse(BaseModel):
translations: List[str] = Field(..., description="Translated sentences")
class Config:
json_schema_extra = {"example": {"translations": ["ನಮಸ್ಕಾರ", "ನೀವು ಹೇಗಿದ್ದೀರಿ?"]}}
class VisualQueryRequest(BaseModel):
query: str = Field(..., description="Text query")
src_lang: str = Field(..., description="Source language code")
tgt_lang: str = Field(..., description="Target language code")
class Config:
json_schema_extra = {
"example": {
"query": "Describe the image",
"src_lang": "kan_Knda",
"tgt_lang": "kan_Knda"
}
}
class VisualQueryResponse(BaseModel):
answer: str
class Config:
json_schema_extra = {"example": {"answer": "The image shows a screenshot of a webpage."}}
class PDFTextExtractionResponse(BaseModel):
page_content: str = Field(..., description="Extracted text from the specified PDF page")
class Config:
json_schema_extra = {
"example": {
"page_content": "Google Interview Preparation Guide\nCustomer Engineer Specialist\n\nOur hiring process\n..."
}
}
class DocumentProcessPage(BaseModel):
processed_page: int = Field(..., description="Page number of the extracted text")
page_content: str = Field(..., description="Extracted text from the page")
translated_content: Optional[str] = Field(None, description="Translated text of the page, if applicable")
class Config:
json_schema_extra = {
"example": {
"processed_page": 1,
"page_content": "Okay, here's a plain text representation of the document...",
"translated_content": "ಸರಿ, ಇಲ್ಲಿ ಡಾಕ್ಯುಮೆಂಟ್ನ ಸರಳ ಪಠ್ಯ ಪ್ರಾತಿನಿಧ್ಯವಿದೆ..."
}
}
class DocumentProcessResponse(BaseModel):
pages: List[DocumentProcessPage] = Field(..., description="List of pages with extracted and translated text")
class Config:
json_schema_extra = {
"example": {
"pages": [
{
"processed_page": 1,
"page_content": "Okay, here's a plain text representation of the document...\n\n**Electronic Reservation Slip (ERS) - Normal User**\n...",
"translated_content": "ಸರಿ, ಇಲ್ಲಿ ಡಾಕ್ಯುಮೆಂಟ್ನ ಸರಳ ಪಠ್ಯ ಪ್ರಾತಿನಿಧ್ಯವಿದೆ...\n\n**ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೀಸಲಾತಿ ಸ್ಲಿಪ್ (ಇಆರ್ಎಸ್) - ಸಾಮಾನ್ಯ ಬಳಕೆದಾರ**\n..."
}
]
}
}
class SummarizePDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
summary: str = Field(..., description="Summary of the specified page")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\nElectronic Reservation Slip (ERS)...",
"summary": "This ERS details a sleeper class train booking (17307/Basava Express) from KSR Bengaluru to Kalaburagi...",
"processed_page": 1
}
}
class IndicSummarizePDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
summary: str = Field(..., description="Summary of the specified page in the source language")
translated_summary: str = Field(..., description="Summary translated into the target language")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\nElectronic Reservation Slip (ERS)...",
"summary": "This ERS details a Sleeper Class train booking for passenger Anand on Train 17307 (Basava Express)...",
"translated_summary": "ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೀಸಲಾತಿ ಸ್ಲಿಪ್ (ಇಆರ್ಎಸ್) ನ 4-ವಾಕ್ಯಗಳ ಸಾರಾಂಶ ಹೀಗಿದೆ...",
"processed_page": 1
}
}
class CustomPromptPDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
response: str = Field(..., description="Response based on the custom prompt")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\n**Clevertronic**\nBestellnummer: 801772347...",
"response": "Okay, here’s a list of the key points from the document:\n* Company Information: Clevertronic GmbH...",
"processed_page": 1
}
}
class IndicCustomPromptPDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
response: str = Field(..., description="Response based on the custom prompt")
translated_response: str = Field(..., description="Translated response in the target language")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\n**Clevertronic. Voll. Venture GmbH**...",
"response": "Okay, here’s a list of key points from the document:\n* Company Information: Clevertronic. Voll. Venture GmbH...",
"translated_response": "ಸರಿ, ಡಾಕ್ಯುಮೆಂಟ್ನ ಪ್ರಮುಖ ಅಂಶಗಳ ಪಟ್ಟಿ ಹೀಗಿದೆ...\n* ಕಂಪನಿ ಮಾಹಿತಿ: ಕ್ಲೆವರ್ಟ್ರಾನಿಕ್. ಮತಪತ್ರ. ವೆಂಚರ್ ಜಿಎಂಬಿಎಚ್...",
"processed_page": 1
}
}
class ChatCompletionRequest(BaseModel):
model: str = Field(default="gemma-3-12b-it", description="Model identifier")
messages: List[Dict[str, str]] = Field(..., description="List of messages")
max_tokens: Optional[int] = Field(None, description="Maximum tokens to generate")
temperature: Optional[float] = Field(1.0, description="Sampling temperature")
top_p: Optional[float] = Field(1.0, description="Nucleus sampling parameter")
stream: Optional[bool] = Field(False, description="Whether to stream the response")
class Config:
json_schema_extra = {
"example": {
"model": "gemma-3-12b-it",
"messages": [{"role": "user", "content": "Hello!"}],
"max_tokens": 100,
"temperature": 1.0,
"top_p": 1.0,
"stream": False
}
}
class ChatCompletionChoice(BaseModel):
index: int
message: Dict[str, str]
finish_reason: Optional[str]
class Config:
json_schema_extra = {
"example": {
"index": 0,
"message": {"role": "assistant", "content": "Hi there!"},
"finish_reason": "stop"
}
}
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[ChatCompletionChoice]
usage: Optional[Dict[str, int]] = None
class Config:
json_schema_extra = {
"example": {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1698765432,
"model": "gemma-3-12b-it",
"choices": [{"index": 0, "message": {"role": "assistant", "content": "Hi there!"}, "finish_reason": "stop"}],
"usage": {"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}
}
}
# TTS Service Interface
class TTSService(ABC):
@abstractmethod
async def generate_speech(self, payload: dict) -> requests.Response:
pass
class ExternalTTSService(TTSService):
async def generate_speech(self, payload: dict) -> requests.Response:
try:
base_url = f"{os.getenv('EXTERNAL_API_BASE_URL')}/v1/audio/speech"
return requests.post(
base_url,
json=payload,
headers={"accept": "*/*", "Content-Type": "application/json"},
stream=True,
timeout=60
)
except requests.Timeout:
logger.error("External TTS API timeout")
raise HTTPException(status_code=504, detail="External TTS API timeout")
except requests.RequestException as e:
logger.error(f"External TTS API error: {str(e)}")
raise HTTPException(status_code=502, detail=f"External TTS service error: {str(e)}")
def get_tts_service() -> TTSService:
return ExternalTTSService()
# Initialize OpenAI client
openai_client = AsyncOpenAI(
base_url=os.getenv("DWANI_AI_LLM_URL"),
api_key=os.getenv("DWANI_AI_LLM_API_KEY", ""),
timeout=30.0
)
# Endpoints (unchanged)
@app.get("/v1/health", summary="Check API Health", description="Returns the health status of the API and the current model in use.", tags=["Utility"], response_model=dict)
async def health_check():
return {"status": "healthy", "model": "llm_model_name"}
@app.get("/", summary="Redirect to Docs", description="Redirects to the Swagger UI documentation.", tags=["Utility"])
async def home():
return RedirectResponse(url="/docs")
@app.post("/v1/audio/speech", summary="Generate Speech from Text", description="Convert text to speech using an external TTS service and return as a downloadable audio file.", tags=["Audio"])
async def generate_audio(
request: Request,
input: str = Query(..., description="Text to convert to speech (max 1000 characters)"),
response_format: str = Query("mp3", description="Audio format (ignored, defaults to mp3 for external API)"),
tts_service: TTSService = Depends(get_tts_service),
background_tasks: BackgroundTasks = BackgroundTasks()
):
if not input.strip():
raise HTTPException(status_code=400, detail="Input cannot be empty")
if len(input) > 1000:
raise HTTPException(status_code=400, detail="Input cannot exceed 1000 characters")
logger.info("Processing speech request", extra={
"endpoint": "/v1/audio/speech",
"input_length": len(input),
"client_ip": request.client.host
})
payload = {"text": input}
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
temp_file_path = temp_file.name
try:
response = await tts_service.generate_speech(payload)
response.raise_for_status()
with open(temp_file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
headers = {
"Content-Disposition": "attachment; filename=\"speech.mp3\"",
"Cache-Control": "no-cache",
}
def cleanup_file(file_path: str):
try:
if os.path.exists(file_path):
os.unlink(file_path)
logger.info(f"Deleted temporary file: {file_path}")
except Exception as e:
logger.error(f"Failed to delete temporary file {file_path}: {str(e)}")
background_tasks.add_task(cleanup_file, temp_file_path)
return FileResponse(
path=temp_file_path,
filename="speech.mp3",
media_type="audio/mp3",
headers=headers
)
except requests.HTTPError as e:
logger.error(f"External TTS request failed: {str(e)}")
raise HTTPException(status_code=502, detail=f"External TTS service error: {str(e)}")
finally:
temp_file.close()
@app.post("/v1/indic_chat", response_model=ChatResponse, summary="Chat with AI", description="Generate a chat response from a prompt and language code.", tags=["Chat"])
async def chat(request: Request, chat_request: ChatRequest):
if not chat_request.prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if len(chat_request.prompt) > 1000:
raise HTTPException(status_code=400, detail="Prompt cannot exceed 1000 characters")
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}")
try:
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic_chat"
payload = {
"prompt": chat_request.prompt,
"src_lang": chat_request.src_lang,
"tgt_lang": chat_request.tgt_lang
}
response = requests.post(
external_url,
json=payload,
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
response_text = response_data.get("response", "")
logger.info(f"Generated Chat response from external API: {response_text}")
return ChatResponse(response=response_text)
except requests.Timeout:
logger.error("External chat API request timed out")
raise HTTPException(status_code=504, detail="Chat service timeout")
except requests.RequestException as e:
logger.error(f"Error calling external chat API: {str(e)}")
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.post("/v1/transcribe/", response_model=TranscriptionResponse, summary="Transcribe Audio File", description="Transcribe an audio file into text in the specified language.", tags=["Audio"])
async def transcribe_audio(
file: UploadFile = File(..., description="Audio file to transcribe"),
language: str = Query(..., description="Language of the audio (kannada, hindi, tamil)")
):
allowed_languages = ["kannada", "hindi", "tamil"]
if language not in allowed_languages:
raise HTTPException(status_code=400, detail=f"Language must be one of {allowed_languages}")
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
external_url = f"{os.getenv('EXTERNAL_API_BASE_URL_ASR')}/transcribe/?language={language}"
response = requests.post(
external_url,
files=files,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
transcription = response.json().get("text", "")
logger.info(f"Transcription completed in {time() - start_time:.2f} seconds")
return TranscriptionResponse(text=transcription)
except requests.Timeout:
logger.error("Transcription service timed out")
raise HTTPException(status_code=504, detail="Transcription service timeout")
except requests.RequestException as e:
logger.error(f"Transcription request failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
@app.post("/v1/translate", response_model=TranslationResponse, summary="Translate Text", description="Translate a list of sentences from a source to a target language.", tags=["Translation"])
async def translate(request: TranslationRequest):
if not request.sentences:
raise HTTPException(status_code=400, detail="Sentences cannot be empty")
supported_languages = [
"eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu",
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn",
"rus_Cyrl", "pol_Latn"
]
if request.src_lang not in supported_languages or request.tgt_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported language codes: src={request.src_lang}, tgt={request.tgt_lang}")
logger.info(f"Received translation request: {len(request.sentences)} sentences, src_lang: {request.src_lang}, tgt_lang: {request.tgt_lang}")
external_url = f"{os.getenv('DWANI_API_BASE_URL_TRANSLATE')}"
payload = {
"sentences": request.sentences,
"src_lang": request.src_lang,
"tgt_lang": request.tgt_lang
}
try:
response = requests.post(
f"{external_url}/translate?src_lang={request.src_lang}&tgt_lang={request.tgt_lang}",
json=payload,
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
translations = response_data.get("translations", [])
if not translations or len(translations) != len(request.sentences):
logger.warning(f"Unexpected response format: {response_data}")
raise HTTPException(status_code=500, detail="Invalid response from translation service")
logger.info(f"Translation successful: {translations}")
return TranslationResponse(translations=translations)
except requests.Timeout:
logger.error("Translation request timed out")
raise HTTPException(status_code=504, detail="Translation service timeout")
except requests.RequestException as e:
logger.error(f"Error during translation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from translation service")
@app.post("/v1/indic_visual_query", response_model=VisualQueryResponse, summary="Visual Query with Image", description="Process a visual query with a text query, image, and language codes.", tags=["Chat"])
async def visual_query(
request: Request,
query: str = Form(..., description="Text query to describe or analyze the image"),
file: UploadFile = File(..., description="Image file to analyze (e.g., PNG, JPEG)"),
src_lang: str = Query(..., description="Source language code (e.g., kan_Knda, en)"),
tgt_lang: str = Query(..., description="Target language code (e.g., kan_Knda, en)")
):
if not query.strip():
raise HTTPException(status_code=400, detail="Query cannot be empty")
if len(query) > 1000:
raise HTTPException(status_code=400, detail="Query cannot exceed 1000 characters")
supported_languages = ["kan_Knda", "hin_Deva", "tam_Taml", "eng_Latn"]
if src_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
if tgt_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported target language: {tgt_lang}")
logger.info("Processing visual query request", extra={
"endpoint": "/v1/indic_visual_query",
"query_length": len(query),
"file_name": file.filename,
"client_ip": request.client.host,
"src_lang": src_lang,
"tgt_lang": tgt_lang
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-visual-query/"
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
data = {
"prompt": query,
"source_language": src_lang,
"target_language": tgt_lang
}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
answer = response_data.get("response", "")
if not answer:
logger.warning(f"Empty or missing 'response' field in external API response: {response_data}")
raise HTTPException(status_code=500, detail="No valid response provided by visual query service")
logger.info(f"Visual query successful: {answer}")
return VisualQueryResponse(answer=answer)
except requests.Timeout:
logger.error("Visual query request timed out")
raise HTTPException(status_code=504, detail="Visual query service timeout")
except requests.RequestException as e:
logger.error(f"Error during visual query: {str(e)}")
raise HTTPException(status_code=500, detail=f"Visual query failed: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from visual query service")
class SupportedLanguage(str, Enum):
kannada = "kannada"
hindi = "hindi"
tamil = "tamil"
@app.post("/v1/speech_to_speech", summary="Speech-to-Speech Conversion", description="Convert input speech to processed speech in the specified language.", tags=["Audio"])
async def speech_to_speech(
request: Request,
file: UploadFile = File(..., description="Audio file to process"),
language: str = Query(..., description="Language of the audio (kannada, hindi, tamil)")
) -> StreamingResponse:
allowed_languages = [lang.value for lang in SupportedLanguage]
if language not in allowed_languages:
raise HTTPException(status_code=400, detail=f"Language must be one of {allowed_languages}")
logger.info("Processing speech-to-speech request", extra={
"endpoint": "/v1/speech_to_speech",
"audio_filename": file.filename,
"language": language,
"client_ip": request.client.host
})
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
external_url = f"{os.getenv('EXTERNAL_API_BASE_URL')}/v1/speech_to_speech?language={language}"
response = requests.post(
external_url,
files=files,
headers={"accept": "application/json"},
stream=True,
timeout=60
)
response.raise_for_status()
headers = {
"Content-Disposition": f"inline; filename=\"speech.mp3\"",
"Cache-Control": "no-cache",
"Content-Type": "audio/mp3"
}
return StreamingResponse(
response.iter_content(chunk_size=8192),
media_type="audio/mp3",
headers=headers
)
except requests.Timeout:
logger.error("External speech-to-speech API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External speech-to-speech API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
@app.post("/v1/extract-text", response_model=PDFTextExtractionResponse, summary="Extract Text from PDF", description="Extract text from a specified page of a PDF file.", tags=["PDF"])
async def extract_text(
request: Request,
file: UploadFile = File(..., description="PDF file to extract text from"),
page_number: int = Query(1, description="Page number to extract text from (1-based indexing)")
):
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
logger.info("Processing PDF text extraction request", extra={
"endpoint": "/v1/extract-text",
"file_name": file.filename,
"page_number": page_number,
"client_ip": request.client.host
})
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/extract-text/?page_number={page_number}"
response = requests.post(
external_url,
files=files,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
extracted_text = response_data.get("page_content", "")
if not extracted_text:
logger.warning("No page_content found in external API response")
extracted_text = ""
logger.info(f"PDF text extraction completed in {time() - start_time:.2f} seconds")
return PDFTextExtractionResponse(page_content=extracted_text.strip())
except requests.Timeout:
logger.error("External PDF extraction API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External PDF extraction API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-extract-text/", response_model=DocumentProcessResponse, tags=["PDF"])
async def extract_and_translate(
file: UploadFile = File(...),
page_number: int = 1,
src_lang: str = "eng_Latn",
tgt_lang: str = "kan_Knda"
):
if not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="Only PDF files are supported")
url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-extract-text/"
headers = {"accept": "application/json"}
files = {"file": (file.filename, await file.read(), "application/pdf")}
data = {"page_number": str(page_number), "src_lang": src_lang, "tgt_lang": tgt_lang}
try:
response = requests.post(url, headers=headers, files=files, data=data)
if response.status_code != 200:
raise HTTPException(status_code=response.status_code, detail=f"External API error: {response.text}")
api_response = response.json()
page_content = api_response.get("page_content", "")
translated_content = api_response.get("translated_content", "")
page = DocumentProcessPage(
processed_page=page_number,
page_content=page_content,
translated_content=translated_content
)
return DocumentProcessResponse(pages=[page])
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error calling external API: {str(e)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
finally:
await file.close()
@app.post("/v1/summarize-pdf", response_model=SummarizePDFResponse, summary="Summarize a Specific Page of a PDF", description="Summarize the content of a specific page of a PDF file.", tags=["PDF"])
async def summarize_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to summarize"),
page_number: int = Form(..., description="Page number to summarize (1-based indexing)")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
logger.info("Processing PDF summary request", extra={
"endpoint": "/summarize-pdf",
"file_name": file.filename,
"page_number": page_number,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/summarize-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
summary = response_data.get("summary", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not summary:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, summary={'present' if summary else 'missing'}")
return SummarizePDFResponse(
original_text=original_text or "No text extracted",
summary=summary or "No summary provided",
processed_page=processed_page
)
logger.info(f"PDF summary completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return SummarizePDFResponse(
original_text=original_text,
summary=summary,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External PDF summary API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External PDF summary API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-summarize-pdf", response_model=IndicSummarizePDFResponse, summary="Summarize and Translate a Specific Page of a PDF", description="Summarize and translate the content of a specific page of a PDF.", tags=["PDF"])
async def indic_summarize_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to summarize"),
page_number: int = Form(..., description="Page number to summarize (1-based indexing)"),
src_lang: str = Form(..., description="Source language code (e.g., eng_Latn)"),
tgt_lang: str = Form(..., description="Target language code (e.g., kan_Knda)")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
supported_languages = [
"eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu",
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn",
"rus_Cyrl", "pol_Latn"
]
if src_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
if tgt_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported target language: {tgt_lang}")
logger.info("Processing Indic PDF summary request", extra={
"endpoint": "/indic-summarize-pdf",
"file_name": file.filename,
"page_number": page_number,
"src_lang": src_lang,
"tgt_lang": tgt_lang,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-summarize-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number, "src_lang": src_lang, "tgt_lang": tgt_lang}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
summary = response_data.get("summary", "")
translated_summary = response_data.get("translated_summary", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not summary or not translated_summary:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, summary={'present' if summary else 'missing'}, translated_summary={'present' if translated_summary else 'missing'}")
return IndicSummarizePDFResponse(
original_text=original_text or "No text extracted",
summary=summary or "No summary provided",
translated_summary=translated_summary or "No translated summary provided",
processed_page=processed_page
)
logger.info(f"Indic PDF summary completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return IndicSummarizePDFResponse(
original_text=original_text,
summary=summary,
translated_summary=translated_summary,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External Indic PDF summary API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External Indic PDF summary API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/custom-prompt-pdf", response_model=CustomPromptPDFResponse, summary="Process a PDF with a Custom Prompt", description="Extract text from a specific page of a PDF and process it with a custom prompt.", tags=["PDF"])
async def custom_prompt_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to process"),
page_number: int = Form(..., description="Page number to process (1-based indexing)"),
prompt: str = Form(..., description="Custom prompt to process the page content")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
logger.info("Processing custom prompt PDF request", extra={
"endpoint": "/custom-prompt-pdf",
"file_name": file.filename,
"page_number": page_number,
"prompt": prompt,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/custom-prompt-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number, "prompt": prompt}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
custom_response = response_data.get("response", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not custom_response:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, response={'present' if custom_response else 'missing'}")
return CustomPromptPDFResponse(
original_text=original_text or "No text extracted",
response=custom_response or "No response provided",
processed_page=processed_page
)
logger.info(f"Custom prompt PDF processing completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return CustomPromptPDFResponse(
original_text=original_text,
response=custom_response,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External custom prompt PDF API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External custom prompt PDF API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-custom-prompt-pdf", response_model=IndicCustomPromptPDFResponse, summary="Process a PDF with a Custom Prompt and Translation", description="Extract text, process with a custom prompt, and translate the response.", tags=["PDF"])
async def indic_custom_prompt_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to process"),
page_number: int = Form(..., description="Page number to process (1-based indexing)"),
prompt: str = Form(..., description="Custom prompt to process the page content"),
source_language: str = Form(..., description="Source language code (e.g., eng_Latn)"),
target_language: str = Form(..., description="Target language code (e.g., kan_Knda)")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if not source_language.strip() or not target_language.strip():
raise HTTPException(status_code=400, detail="Source and target language codes cannot be empty")
logger.info("Processing indic custom prompt PDF request", extra={
"endpoint": "/indic-custom-prompt-pdf",
"file_name": file.filename,
"page_number": page_number,
"prompt": prompt,
"source_language": source_language,
"target_language": target_language,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-custom-prompt-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {
"page_number": page_number,
"prompt": prompt,
"source_language": source_language,
"target_language": target_language
}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
custom_response = response_data.get("response", "")
translated_response = response_data.get("translated_response", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not custom_response or not translated_response:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, response={'present' if custom_response else 'missing'}, translated_response={'present' if translated_response else 'missing'}")
return IndicCustomPromptPDFResponse(
original_text=original_text or "No text extracted",
response=custom_response or "No response provided",
translated_response=translated_response or "No translated response provided",
processed_page=processed_page
)
logger.info(f"Indic custom prompt PDF processing completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return IndicCustomPromptPDFResponse(
original_text=original_text,
response=custom_response,
translated_response=translated_response,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External indic custom prompt PDF API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External indic custom prompt PDF API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-custom-prompt-kannada-pdf", summary="Generate Kannada PDF with Custom Prompt", description="Process a PDF with a custom prompt and generate a new PDF in Kannada.", tags=["PDF"])
async def indic_custom_prompt_kannada_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to process"),
page_number: int = Form(..., description="Page number to process (1-based indexing)"),
prompt: str = Form(..., description="Custom prompt to process the page content"),
src_lang: str = Form(..., description="Source language code (e.g., eng_Latn)"),
background_tasks: BackgroundTasks = BackgroundTasks()
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
supported_languages = ["eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu"]
if src_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
logger.info("Processing Kannada PDF generation request", extra={
"endpoint": "/v1/indic-custom-prompt-kannada-pdf",
"file_name": file.filename,
"page_number": page_number,
"prompt": prompt,
"src_lang": src_lang,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-custom-prompt-kannada-pdf/"
start_time = time()
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
temp_file_path = temp_file.name
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number, "prompt": prompt, "src_lang": src_lang}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
stream=True,
timeout=60
)
response.raise_for_status()
with open(temp_file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
headers = {
"Content-Disposition": "attachment; filename=\"generated_kannada.pdf\"",
"Cache-Control": "no-cache",
}
def cleanup_file(file_path: str):
try:
if os.path.exists(file_path):
os.unlink(file_path)
logger.info(f"Deleted temporary file: {file_path}")
except Exception as e:
logger.error(f"Failed to delete temporary file {file_path}: {str(e)}")
background_tasks.add_task(cleanup_file, temp_file_path)
logger.info(f"Kannada PDF generation completed in {time() - start_time:.2f} seconds")
return FileResponse(
path=temp_file_path,
filename="generated_kannada.pdf",
media_type="application/pdf",
headers=headers
)
except requests.Timeout:
logger.error("External Kannada PDF API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External Kannada PDF API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
finally:
temp_file.close()
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, summary="OpenAI-Compatible Chat Completions", description="Proxies chat completions to llama-server using OpenAI API format.", tags=["Chat"])
async def chat_completions(request: Request, body: ChatCompletionRequest):
if not body.messages:
logger.error("Messages field is empty", extra={"client_ip": request.client.host})
raise HTTPException(status_code=400, detail="Messages cannot be empty")
logger.info("Received chat completion request", extra={
"endpoint": "/v1/chat/completions",
"model": body.model,
"messages": body.messages,
"client_ip": request.client.host
})
start_time = time()
try:
response = await openai_client.chat.completions.create(
model=body.model,
messages=body.messages,
max_tokens=body.max_tokens,
temperature=body.temperature,
top_p=body.top_p,
stream=body.stream
)
if body.stream:
logger.error("Streaming requested but not supported")
raise HTTPException(status_code=400, detail="Streaming not supported")
openai_response = ChatCompletionResponse(
id=response.id,
created=response.created,
model=response.model,
choices=[
ChatCompletionChoice(
index=choice.index,
message={"role": choice.message.role, "content": choice.message.content},
finish_reason=choice.finish_reason
) for choice in response.choices
],
usage=(
{
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens
} if response.usage else None
)
)
logger.info(f"Chat completion successful in {time() - start_time:.2f} seconds", extra={
"response_length": len(response.choices[0].message.content if response.choices else 0)
})
return openai_response
except OpenAIError as e:
logger.error(f"llama-server error: {str(e)}", extra={"client_ip": request.client.host})
status_code = 504 if "timeout" in str(e).lower() else 500
raise HTTPException(status_code=status_code, detail=f"llama-server error: {str(e)}")
except Exception as e:
logger.error(f"Internal error: {str(e)}", extra={"client_ip": request.client.host})
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
external_api_base_url = os.getenv("EXTERNAL_API_BASE_URL")
if not external_api_base_url:
raise ValueError("Environment variable EXTERNAL_API_BASE_URL must be set")
external_pdf_api_base_url = os.getenv("EXTERNAL_PDF_API_BASE_URL")
if not external_pdf_api_base_url:
raise ValueError("Environment variable EXTERNAL_PDF_API_BASE_URL must be set")
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
parser.add_argument("--port", type=int, default=8000, help="Port to run the server on.")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on.")
args = parser.parse_args()
uvicorn.run(app, host=args.host, port=args.port)