Spaces:
Paused
Paused
File size: 55,394 Bytes
9ec8ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 |
import argparse
import os
from typing import List, Optional, Dict, Any
from abc import ABC, abstractmethod
import uvicorn
from fastapi import FastAPI, File, HTTPException, Query, Request, UploadFile, Form, Depends, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse, FileResponse
from pydantic import BaseModel, Field
import requests
from time import time
import socket
from functools import lru_cache
from fastapi.background import BackgroundTasks
import tempfile
from enum import Enum
from openai import AsyncOpenAI, OpenAIError
# Assuming these are in your project structure
from config.tts_config import SPEED, ResponseFormat, config as tts_config
from config.logging_config import logger
# FastAPI app setup
app = FastAPI(
title="Dhwani API",
description="A multilingual AI-powered API supporting Indian languages for chat, text-to-speech, audio processing, and transcription.",
version="1.0.0",
redirect_slashes=False,
openapi_tags=[
{"name": "Chat", "description": "Chat-related endpoints"},
{"name": "Audio", "description": "Audio processing and TTS endpoints"},
{"name": "Translation", "description": "Text translation endpoints"},
{"name": "Utility", "description": "General utility endpoints"},
{"name": "PDF", "description": "PDF processing endpoints"},
],
)
# Allowed origins for CORS and IP restriction
ALLOWED_ORIGINS = [
"https://dwani.ai",
"https://*.dwani.ai",
"https://dwani-*.hf.space",
]
# Cache for resolved IPs
@lru_cache(maxsize=100)
def resolve_domain_to_ips(domain: str, ttl: int = 3600) -> set:
"""Resolve a domain to its IP addresses."""
try:
clean_domain = domain.replace("https://", "").replace("*.", "").replace("dwani-*.", "")
ip_addresses = set()
for info in socket.getaddrinfo(clean_domain, None, socket.AF_INET):
ip = info[4][0]
ip_addresses.add(ip)
logger.debug(f"Resolved IPs for {clean_domain}: {ip_addresses}")
return ip_addresses
except socket.gaierror as e:
logger.error(f"Failed to resolve domain {domain}: {str(e)}")
return set()
async def resolve_allowed_ips() -> set:
"""Resolve all allowed origins to their IP addresses."""
allowed_ips = set()
for origin in ALLOWED_ORIGINS:
if "dwani-*.hf.space" in origin:
subdomains = [
"dwani-prod.hf.space",
"dwani-test.hf.space",
"dwani-indic-image-query.hf.space"
"dwani-dwani-server-workshop.hf.space" # Added to allow this subdomain
]
for subdomain in subdomains:
allowed_ips.update(resolve_domain_to_ips(f"https://{subdomain}"))
elif "*.dwani.ai" in origin:
subdomains = ["dwani.ai", "api.dwani.ai", "app.dwani.ai"]
for subdomain in subdomains:
allowed_ips.update(resolve_domain_to_ips(f"https://{subdomain}"))
else:
allowed_ips.update(resolve_domain_to_ips(origin))
logger.info(f"Resolved allowed IPs: {allowed_ips}")
return allowed_ips
# Custom ASGI middleware to restrict requests by client IP
class RestrictIPMiddleware:
def __init__(self, app):
self.app = app
async def __call__(self, scope: dict, receive: callable, send: callable):
if scope["type"] != "http":
await self.app(scope, receive, send)
return
client_ip = scope.get("client", ("unknown", 0))[0]
allowed_ips = await resolve_allowed_ips()
if client_ip == "unknown" or client_ip not in allowed_ips:
logger.warning(f"Blocked request from unauthorized IP: {client_ip}")
await send({
"type": "http.response.start",
"status": 403,
"headers": [(b"content-type", b"application/json")],
})
await send({
"type": "http.response.body",
"body": b'{"detail": "Request from unauthorized IP"}',
})
return
await self.app(scope, receive, send)
# Add middlewares
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://*.hf.space",
"https://dwani.ai",
"https://*.dwani.ai",
"https://dwani-*.hf.space",
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(RestrictIPMiddleware)
# Request/Response Models (unchanged)
class TranscriptionResponse(BaseModel):
text: str = Field(..., description="Transcribed text from the audio")
class Config:
json_schema_extra = {"example": {"text": "Hello, how are you?"}}
class TextGenerationResponse(BaseModel):
text: str = Field(..., description="Generated text response")
class Config:
json_schema_extra = {"example": {"text": "Hi there, I'm doing great!"}}
class AudioProcessingResponse(BaseModel):
result: str = Field(..., description="Processed audio result")
class Config:
json_schema_extra = {"example": {"result": "Processed audio output"}}
class ChatRequest(BaseModel):
prompt: str = Field(..., description="Prompt for chat (max 1000 characters)")
src_lang: str = Field(..., description="Source language code")
tgt_lang: str = Field(..., description="Target language code")
class Config:
json_schema_extra = {
"example": {
"prompt": "Hello, how are you?",
"src_lang": "kan_Knda",
"tgt_lang": "kan_Knda"
}
}
class ChatResponse(BaseModel):
response: str = Field(..., description="Generated chat response")
class Config:
json_schema_extra = {"example": {"response": "Hi there, I'm doing great!"}}
class TranslationRequest(BaseModel):
sentences: List[str] = Field(..., description="List of sentences to translate")
src_lang: str = Field(..., description="Source language code")
tgt_lang: str = Field(..., description="Target language code")
class Config:
json_schema_extra = {
"example": {
"sentences": ["Hello", "How are you?"],
"src_lang": "en",
"tgt_lang": "kan_Knda"
}
}
class TranslationResponse(BaseModel):
translations: List[str] = Field(..., description="Translated sentences")
class Config:
json_schema_extra = {"example": {"translations": ["ನಮಸ್ಕಾರ", "ನೀವು ಹೇಗಿದ್ದೀರಿ?"]}}
class VisualQueryRequest(BaseModel):
query: str = Field(..., description="Text query")
src_lang: str = Field(..., description="Source language code")
tgt_lang: str = Field(..., description="Target language code")
class Config:
json_schema_extra = {
"example": {
"query": "Describe the image",
"src_lang": "kan_Knda",
"tgt_lang": "kan_Knda"
}
}
class VisualQueryResponse(BaseModel):
answer: str
class Config:
json_schema_extra = {"example": {"answer": "The image shows a screenshot of a webpage."}}
class PDFTextExtractionResponse(BaseModel):
page_content: str = Field(..., description="Extracted text from the specified PDF page")
class Config:
json_schema_extra = {
"example": {
"page_content": "Google Interview Preparation Guide\nCustomer Engineer Specialist\n\nOur hiring process\n..."
}
}
class DocumentProcessPage(BaseModel):
processed_page: int = Field(..., description="Page number of the extracted text")
page_content: str = Field(..., description="Extracted text from the page")
translated_content: Optional[str] = Field(None, description="Translated text of the page, if applicable")
class Config:
json_schema_extra = {
"example": {
"processed_page": 1,
"page_content": "Okay, here's a plain text representation of the document...",
"translated_content": "ಸರಿ, ಇಲ್ಲಿ ಡಾಕ್ಯುಮೆಂಟ್ನ ಸರಳ ಪಠ್ಯ ಪ್ರಾತಿನಿಧ್ಯವಿದೆ..."
}
}
class DocumentProcessResponse(BaseModel):
pages: List[DocumentProcessPage] = Field(..., description="List of pages with extracted and translated text")
class Config:
json_schema_extra = {
"example": {
"pages": [
{
"processed_page": 1,
"page_content": "Okay, here's a plain text representation of the document...\n\n**Electronic Reservation Slip (ERS) - Normal User**\n...",
"translated_content": "ಸರಿ, ಇಲ್ಲಿ ಡಾಕ್ಯುಮೆಂಟ್ನ ಸರಳ ಪಠ್ಯ ಪ್ರಾತಿನಿಧ್ಯವಿದೆ...\n\n**ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೀಸಲಾತಿ ಸ್ಲಿಪ್ (ಇಆರ್ಎಸ್) - ಸಾಮಾನ್ಯ ಬಳಕೆದಾರ**\n..."
}
]
}
}
class SummarizePDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
summary: str = Field(..., description="Summary of the specified page")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\nElectronic Reservation Slip (ERS)...",
"summary": "This ERS details a sleeper class train booking (17307/Basava Express) from KSR Bengaluru to Kalaburagi...",
"processed_page": 1
}
}
class IndicSummarizePDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
summary: str = Field(..., description="Summary of the specified page in the source language")
translated_summary: str = Field(..., description="Summary translated into the target language")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\nElectronic Reservation Slip (ERS)...",
"summary": "This ERS details a Sleeper Class train booking for passenger Anand on Train 17307 (Basava Express)...",
"translated_summary": "ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೀಸಲಾತಿ ಸ್ಲಿಪ್ (ಇಆರ್ಎಸ್) ನ 4-ವಾಕ್ಯಗಳ ಸಾರಾಂಶ ಹೀಗಿದೆ...",
"processed_page": 1
}
}
class CustomPromptPDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
response: str = Field(..., description="Response based on the custom prompt")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\n**Clevertronic**\nBestellnummer: 801772347...",
"response": "Okay, here’s a list of the key points from the document:\n* Company Information: Clevertronic GmbH...",
"processed_page": 1
}
}
class IndicCustomPromptPDFResponse(BaseModel):
original_text: str = Field(..., description="Extracted text from the specified page")
response: str = Field(..., description="Response based on the custom prompt")
translated_response: str = Field(..., description="Translated response in the target language")
processed_page: int = Field(..., description="Page number processed")
class Config:
json_schema_extra = {
"example": {
"original_text": "Okay, here's a plain text representation of the document...\n\n**Clevertronic. Voll. Venture GmbH**...",
"response": "Okay, here’s a list of key points from the document:\n* Company Information: Clevertronic. Voll. Venture GmbH...",
"translated_response": "ಸರಿ, ಡಾಕ್ಯುಮೆಂಟ್ನ ಪ್ರಮುಖ ಅಂಶಗಳ ಪಟ್ಟಿ ಹೀಗಿದೆ...\n* ಕಂಪನಿ ಮಾಹಿತಿ: ಕ್ಲೆವರ್ಟ್ರಾನಿಕ್. ಮತಪತ್ರ. ವೆಂಚರ್ ಜಿಎಂಬಿಎಚ್...",
"processed_page": 1
}
}
class ChatCompletionRequest(BaseModel):
model: str = Field(default="gemma-3-12b-it", description="Model identifier")
messages: List[Dict[str, str]] = Field(..., description="List of messages")
max_tokens: Optional[int] = Field(None, description="Maximum tokens to generate")
temperature: Optional[float] = Field(1.0, description="Sampling temperature")
top_p: Optional[float] = Field(1.0, description="Nucleus sampling parameter")
stream: Optional[bool] = Field(False, description="Whether to stream the response")
class Config:
json_schema_extra = {
"example": {
"model": "gemma-3-12b-it",
"messages": [{"role": "user", "content": "Hello!"}],
"max_tokens": 100,
"temperature": 1.0,
"top_p": 1.0,
"stream": False
}
}
class ChatCompletionChoice(BaseModel):
index: int
message: Dict[str, str]
finish_reason: Optional[str]
class Config:
json_schema_extra = {
"example": {
"index": 0,
"message": {"role": "assistant", "content": "Hi there!"},
"finish_reason": "stop"
}
}
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[ChatCompletionChoice]
usage: Optional[Dict[str, int]] = None
class Config:
json_schema_extra = {
"example": {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1698765432,
"model": "gemma-3-12b-it",
"choices": [{"index": 0, "message": {"role": "assistant", "content": "Hi there!"}, "finish_reason": "stop"}],
"usage": {"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}
}
}
# TTS Service Interface
class TTSService(ABC):
@abstractmethod
async def generate_speech(self, payload: dict) -> requests.Response:
pass
class ExternalTTSService(TTSService):
async def generate_speech(self, payload: dict) -> requests.Response:
try:
base_url = f"{os.getenv('EXTERNAL_API_BASE_URL')}/v1/audio/speech"
return requests.post(
base_url,
json=payload,
headers={"accept": "*/*", "Content-Type": "application/json"},
stream=True,
timeout=60
)
except requests.Timeout:
logger.error("External TTS API timeout")
raise HTTPException(status_code=504, detail="External TTS API timeout")
except requests.RequestException as e:
logger.error(f"External TTS API error: {str(e)}")
raise HTTPException(status_code=502, detail=f"External TTS service error: {str(e)}")
def get_tts_service() -> TTSService:
return ExternalTTSService()
# Initialize OpenAI client
openai_client = AsyncOpenAI(
base_url=os.getenv("DWANI_AI_LLM_URL"),
api_key=os.getenv("DWANI_AI_LLM_API_KEY", ""),
timeout=30.0
)
# Endpoints (unchanged)
@app.get("/v1/health", summary="Check API Health", description="Returns the health status of the API and the current model in use.", tags=["Utility"], response_model=dict)
async def health_check():
return {"status": "healthy", "model": "llm_model_name"}
@app.get("/", summary="Redirect to Docs", description="Redirects to the Swagger UI documentation.", tags=["Utility"])
async def home():
return RedirectResponse(url="/docs")
@app.post("/v1/audio/speech", summary="Generate Speech from Text", description="Convert text to speech using an external TTS service and return as a downloadable audio file.", tags=["Audio"])
async def generate_audio(
request: Request,
input: str = Query(..., description="Text to convert to speech (max 1000 characters)"),
response_format: str = Query("mp3", description="Audio format (ignored, defaults to mp3 for external API)"),
tts_service: TTSService = Depends(get_tts_service),
background_tasks: BackgroundTasks = BackgroundTasks()
):
if not input.strip():
raise HTTPException(status_code=400, detail="Input cannot be empty")
if len(input) > 1000:
raise HTTPException(status_code=400, detail="Input cannot exceed 1000 characters")
logger.info("Processing speech request", extra={
"endpoint": "/v1/audio/speech",
"input_length": len(input),
"client_ip": request.client.host
})
payload = {"text": input}
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
temp_file_path = temp_file.name
try:
response = await tts_service.generate_speech(payload)
response.raise_for_status()
with open(temp_file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
headers = {
"Content-Disposition": "attachment; filename=\"speech.mp3\"",
"Cache-Control": "no-cache",
}
def cleanup_file(file_path: str):
try:
if os.path.exists(file_path):
os.unlink(file_path)
logger.info(f"Deleted temporary file: {file_path}")
except Exception as e:
logger.error(f"Failed to delete temporary file {file_path}: {str(e)}")
background_tasks.add_task(cleanup_file, temp_file_path)
return FileResponse(
path=temp_file_path,
filename="speech.mp3",
media_type="audio/mp3",
headers=headers
)
except requests.HTTPError as e:
logger.error(f"External TTS request failed: {str(e)}")
raise HTTPException(status_code=502, detail=f"External TTS service error: {str(e)}")
finally:
temp_file.close()
@app.post("/v1/indic_chat", response_model=ChatResponse, summary="Chat with AI", description="Generate a chat response from a prompt and language code.", tags=["Chat"])
async def chat(request: Request, chat_request: ChatRequest):
if not chat_request.prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if len(chat_request.prompt) > 1000:
raise HTTPException(status_code=400, detail="Prompt cannot exceed 1000 characters")
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}")
try:
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic_chat"
payload = {
"prompt": chat_request.prompt,
"src_lang": chat_request.src_lang,
"tgt_lang": chat_request.tgt_lang
}
response = requests.post(
external_url,
json=payload,
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
response_text = response_data.get("response", "")
logger.info(f"Generated Chat response from external API: {response_text}")
return ChatResponse(response=response_text)
except requests.Timeout:
logger.error("External chat API request timed out")
raise HTTPException(status_code=504, detail="Chat service timeout")
except requests.RequestException as e:
logger.error(f"Error calling external chat API: {str(e)}")
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.post("/v1/transcribe/", response_model=TranscriptionResponse, summary="Transcribe Audio File", description="Transcribe an audio file into text in the specified language.", tags=["Audio"])
async def transcribe_audio(
file: UploadFile = File(..., description="Audio file to transcribe"),
language: str = Query(..., description="Language of the audio (kannada, hindi, tamil)")
):
allowed_languages = ["kannada", "hindi", "tamil"]
if language not in allowed_languages:
raise HTTPException(status_code=400, detail=f"Language must be one of {allowed_languages}")
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
external_url = f"{os.getenv('EXTERNAL_API_BASE_URL_ASR')}/transcribe/?language={language}"
response = requests.post(
external_url,
files=files,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
transcription = response.json().get("text", "")
logger.info(f"Transcription completed in {time() - start_time:.2f} seconds")
return TranscriptionResponse(text=transcription)
except requests.Timeout:
logger.error("Transcription service timed out")
raise HTTPException(status_code=504, detail="Transcription service timeout")
except requests.RequestException as e:
logger.error(f"Transcription request failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
@app.post("/v1/translate", response_model=TranslationResponse, summary="Translate Text", description="Translate a list of sentences from a source to a target language.", tags=["Translation"])
async def translate(request: TranslationRequest):
if not request.sentences:
raise HTTPException(status_code=400, detail="Sentences cannot be empty")
supported_languages = [
"eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu",
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn",
"rus_Cyrl", "pol_Latn"
]
if request.src_lang not in supported_languages or request.tgt_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported language codes: src={request.src_lang}, tgt={request.tgt_lang}")
logger.info(f"Received translation request: {len(request.sentences)} sentences, src_lang: {request.src_lang}, tgt_lang: {request.tgt_lang}")
external_url = f"{os.getenv('DWANI_API_BASE_URL_TRANSLATE')}"
payload = {
"sentences": request.sentences,
"src_lang": request.src_lang,
"tgt_lang": request.tgt_lang
}
try:
response = requests.post(
f"{external_url}/translate?src_lang={request.src_lang}&tgt_lang={request.tgt_lang}",
json=payload,
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
translations = response_data.get("translations", [])
if not translations or len(translations) != len(request.sentences):
logger.warning(f"Unexpected response format: {response_data}")
raise HTTPException(status_code=500, detail="Invalid response from translation service")
logger.info(f"Translation successful: {translations}")
return TranslationResponse(translations=translations)
except requests.Timeout:
logger.error("Translation request timed out")
raise HTTPException(status_code=504, detail="Translation service timeout")
except requests.RequestException as e:
logger.error(f"Error during translation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from translation service")
@app.post("/v1/indic_visual_query", response_model=VisualQueryResponse, summary="Visual Query with Image", description="Process a visual query with a text query, image, and language codes.", tags=["Chat"])
async def visual_query(
request: Request,
query: str = Form(..., description="Text query to describe or analyze the image"),
file: UploadFile = File(..., description="Image file to analyze (e.g., PNG, JPEG)"),
src_lang: str = Query(..., description="Source language code (e.g., kan_Knda, en)"),
tgt_lang: str = Query(..., description="Target language code (e.g., kan_Knda, en)")
):
if not query.strip():
raise HTTPException(status_code=400, detail="Query cannot be empty")
if len(query) > 1000:
raise HTTPException(status_code=400, detail="Query cannot exceed 1000 characters")
supported_languages = ["kan_Knda", "hin_Deva", "tam_Taml", "eng_Latn"]
if src_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
if tgt_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported target language: {tgt_lang}")
logger.info("Processing visual query request", extra={
"endpoint": "/v1/indic_visual_query",
"query_length": len(query),
"file_name": file.filename,
"client_ip": request.client.host,
"src_lang": src_lang,
"tgt_lang": tgt_lang
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-visual-query/"
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
data = {
"prompt": query,
"source_language": src_lang,
"target_language": tgt_lang
}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
answer = response_data.get("response", "")
if not answer:
logger.warning(f"Empty or missing 'response' field in external API response: {response_data}")
raise HTTPException(status_code=500, detail="No valid response provided by visual query service")
logger.info(f"Visual query successful: {answer}")
return VisualQueryResponse(answer=answer)
except requests.Timeout:
logger.error("Visual query request timed out")
raise HTTPException(status_code=504, detail="Visual query service timeout")
except requests.RequestException as e:
logger.error(f"Error during visual query: {str(e)}")
raise HTTPException(status_code=500, detail=f"Visual query failed: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from visual query service")
class SupportedLanguage(str, Enum):
kannada = "kannada"
hindi = "hindi"
tamil = "tamil"
@app.post("/v1/speech_to_speech", summary="Speech-to-Speech Conversion", description="Convert input speech to processed speech in the specified language.", tags=["Audio"])
async def speech_to_speech(
request: Request,
file: UploadFile = File(..., description="Audio file to process"),
language: str = Query(..., description="Language of the audio (kannada, hindi, tamil)")
) -> StreamingResponse:
allowed_languages = [lang.value for lang in SupportedLanguage]
if language not in allowed_languages:
raise HTTPException(status_code=400, detail=f"Language must be one of {allowed_languages}")
logger.info("Processing speech-to-speech request", extra={
"endpoint": "/v1/speech_to_speech",
"audio_filename": file.filename,
"language": language,
"client_ip": request.client.host
})
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
external_url = f"{os.getenv('EXTERNAL_API_BASE_URL')}/v1/speech_to_speech?language={language}"
response = requests.post(
external_url,
files=files,
headers={"accept": "application/json"},
stream=True,
timeout=60
)
response.raise_for_status()
headers = {
"Content-Disposition": f"inline; filename=\"speech.mp3\"",
"Cache-Control": "no-cache",
"Content-Type": "audio/mp3"
}
return StreamingResponse(
response.iter_content(chunk_size=8192),
media_type="audio/mp3",
headers=headers
)
except requests.Timeout:
logger.error("External speech-to-speech API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External speech-to-speech API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
@app.post("/v1/extract-text", response_model=PDFTextExtractionResponse, summary="Extract Text from PDF", description="Extract text from a specified page of a PDF file.", tags=["PDF"])
async def extract_text(
request: Request,
file: UploadFile = File(..., description="PDF file to extract text from"),
page_number: int = Query(1, description="Page number to extract text from (1-based indexing)")
):
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
logger.info("Processing PDF text extraction request", extra={
"endpoint": "/v1/extract-text",
"file_name": file.filename,
"page_number": page_number,
"client_ip": request.client.host
})
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, file.content_type)}
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/extract-text/?page_number={page_number}"
response = requests.post(
external_url,
files=files,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
extracted_text = response_data.get("page_content", "")
if not extracted_text:
logger.warning("No page_content found in external API response")
extracted_text = ""
logger.info(f"PDF text extraction completed in {time() - start_time:.2f} seconds")
return PDFTextExtractionResponse(page_content=extracted_text.strip())
except requests.Timeout:
logger.error("External PDF extraction API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External PDF extraction API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-extract-text/", response_model=DocumentProcessResponse, tags=["PDF"])
async def extract_and_translate(
file: UploadFile = File(...),
page_number: int = 1,
src_lang: str = "eng_Latn",
tgt_lang: str = "kan_Knda"
):
if not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="Only PDF files are supported")
url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-extract-text/"
headers = {"accept": "application/json"}
files = {"file": (file.filename, await file.read(), "application/pdf")}
data = {"page_number": str(page_number), "src_lang": src_lang, "tgt_lang": tgt_lang}
try:
response = requests.post(url, headers=headers, files=files, data=data)
if response.status_code != 200:
raise HTTPException(status_code=response.status_code, detail=f"External API error: {response.text}")
api_response = response.json()
page_content = api_response.get("page_content", "")
translated_content = api_response.get("translated_content", "")
page = DocumentProcessPage(
processed_page=page_number,
page_content=page_content,
translated_content=translated_content
)
return DocumentProcessResponse(pages=[page])
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error calling external API: {str(e)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
finally:
await file.close()
@app.post("/v1/summarize-pdf", response_model=SummarizePDFResponse, summary="Summarize a Specific Page of a PDF", description="Summarize the content of a specific page of a PDF file.", tags=["PDF"])
async def summarize_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to summarize"),
page_number: int = Form(..., description="Page number to summarize (1-based indexing)")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
logger.info("Processing PDF summary request", extra={
"endpoint": "/summarize-pdf",
"file_name": file.filename,
"page_number": page_number,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/summarize-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
summary = response_data.get("summary", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not summary:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, summary={'present' if summary else 'missing'}")
return SummarizePDFResponse(
original_text=original_text or "No text extracted",
summary=summary or "No summary provided",
processed_page=processed_page
)
logger.info(f"PDF summary completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return SummarizePDFResponse(
original_text=original_text,
summary=summary,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External PDF summary API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External PDF summary API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-summarize-pdf", response_model=IndicSummarizePDFResponse, summary="Summarize and Translate a Specific Page of a PDF", description="Summarize and translate the content of a specific page of a PDF.", tags=["PDF"])
async def indic_summarize_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to summarize"),
page_number: int = Form(..., description="Page number to summarize (1-based indexing)"),
src_lang: str = Form(..., description="Source language code (e.g., eng_Latn)"),
tgt_lang: str = Form(..., description="Target language code (e.g., kan_Knda)")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
supported_languages = [
"eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu",
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn",
"rus_Cyrl", "pol_Latn"
]
if src_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
if tgt_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported target language: {tgt_lang}")
logger.info("Processing Indic PDF summary request", extra={
"endpoint": "/indic-summarize-pdf",
"file_name": file.filename,
"page_number": page_number,
"src_lang": src_lang,
"tgt_lang": tgt_lang,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-summarize-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number, "src_lang": src_lang, "tgt_lang": tgt_lang}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
summary = response_data.get("summary", "")
translated_summary = response_data.get("translated_summary", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not summary or not translated_summary:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, summary={'present' if summary else 'missing'}, translated_summary={'present' if translated_summary else 'missing'}")
return IndicSummarizePDFResponse(
original_text=original_text or "No text extracted",
summary=summary or "No summary provided",
translated_summary=translated_summary or "No translated summary provided",
processed_page=processed_page
)
logger.info(f"Indic PDF summary completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return IndicSummarizePDFResponse(
original_text=original_text,
summary=summary,
translated_summary=translated_summary,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External Indic PDF summary API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External Indic PDF summary API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/custom-prompt-pdf", response_model=CustomPromptPDFResponse, summary="Process a PDF with a Custom Prompt", description="Extract text from a specific page of a PDF and process it with a custom prompt.", tags=["PDF"])
async def custom_prompt_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to process"),
page_number: int = Form(..., description="Page number to process (1-based indexing)"),
prompt: str = Form(..., description="Custom prompt to process the page content")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
logger.info("Processing custom prompt PDF request", extra={
"endpoint": "/custom-prompt-pdf",
"file_name": file.filename,
"page_number": page_number,
"prompt": prompt,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/custom-prompt-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number, "prompt": prompt}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
custom_response = response_data.get("response", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not custom_response:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, response={'present' if custom_response else 'missing'}")
return CustomPromptPDFResponse(
original_text=original_text or "No text extracted",
response=custom_response or "No response provided",
processed_page=processed_page
)
logger.info(f"Custom prompt PDF processing completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return CustomPromptPDFResponse(
original_text=original_text,
response=custom_response,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External custom prompt PDF API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External custom prompt PDF API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-custom-prompt-pdf", response_model=IndicCustomPromptPDFResponse, summary="Process a PDF with a Custom Prompt and Translation", description="Extract text, process with a custom prompt, and translate the response.", tags=["PDF"])
async def indic_custom_prompt_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to process"),
page_number: int = Form(..., description="Page number to process (1-based indexing)"),
prompt: str = Form(..., description="Custom prompt to process the page content"),
source_language: str = Form(..., description="Source language code (e.g., eng_Latn)"),
target_language: str = Form(..., description="Target language code (e.g., kan_Knda)")
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if not source_language.strip() or not target_language.strip():
raise HTTPException(status_code=400, detail="Source and target language codes cannot be empty")
logger.info("Processing indic custom prompt PDF request", extra={
"endpoint": "/indic-custom-prompt-pdf",
"file_name": file.filename,
"page_number": page_number,
"prompt": prompt,
"source_language": source_language,
"target_language": target_language,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-custom-prompt-pdf"
start_time = time()
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {
"page_number": page_number,
"prompt": prompt,
"source_language": source_language,
"target_language": target_language
}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
timeout=60
)
response.raise_for_status()
response_data = response.json()
original_text = response_data.get("original_text", "")
custom_response = response_data.get("response", "")
translated_response = response_data.get("translated_response", "")
processed_page = response_data.get("processed_page", page_number)
if not original_text or not custom_response or not translated_response:
logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, response={'present' if custom_response else 'missing'}, translated_response={'present' if translated_response else 'missing'}")
return IndicCustomPromptPDFResponse(
original_text=original_text or "No text extracted",
response=custom_response or "No response provided",
translated_response=translated_response or "No translated response provided",
processed_page=processed_page
)
logger.info(f"Indic custom prompt PDF processing completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
return IndicCustomPromptPDFResponse(
original_text=original_text,
response=custom_response,
translated_response=translated_response,
processed_page=processed_page
)
except requests.Timeout:
logger.error("External indic custom prompt PDF API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External indic custom prompt PDF API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
except ValueError as e:
logger.error(f"Invalid JSON response from external API: {str(e)}")
raise HTTPException(status_code=500, detail="Invalid response format from external API")
@app.post("/v1/indic-custom-prompt-kannada-pdf", summary="Generate Kannada PDF with Custom Prompt", description="Process a PDF with a custom prompt and generate a new PDF in Kannada.", tags=["PDF"])
async def indic_custom_prompt_kannada_pdf(
request: Request,
file: UploadFile = File(..., description="PDF file to process"),
page_number: int = Form(..., description="Page number to process (1-based indexing)"),
prompt: str = Form(..., description="Custom prompt to process the page content"),
src_lang: str = Form(..., description="Source language code (e.g., eng_Latn)"),
background_tasks: BackgroundTasks = BackgroundTasks()
):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
if page_number < 1:
raise HTTPException(status_code=400, detail="Page number must be at least 1")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
supported_languages = ["eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu"]
if src_lang not in supported_languages:
raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
logger.info("Processing Kannada PDF generation request", extra={
"endpoint": "/v1/indic-custom-prompt-kannada-pdf",
"file_name": file.filename,
"page_number": page_number,
"prompt": prompt,
"src_lang": src_lang,
"client_ip": request.client.host
})
external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-custom-prompt-kannada-pdf/"
start_time = time()
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
temp_file_path = temp_file.name
try:
file_content = await file.read()
files = {"file": (file.filename, file_content, "application/pdf")}
data = {"page_number": page_number, "prompt": prompt, "src_lang": src_lang}
response = requests.post(
external_url,
files=files,
data=data,
headers={"accept": "application/json"},
stream=True,
timeout=60
)
response.raise_for_status()
with open(temp_file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
headers = {
"Content-Disposition": "attachment; filename=\"generated_kannada.pdf\"",
"Cache-Control": "no-cache",
}
def cleanup_file(file_path: str):
try:
if os.path.exists(file_path):
os.unlink(file_path)
logger.info(f"Deleted temporary file: {file_path}")
except Exception as e:
logger.error(f"Failed to delete temporary file {file_path}: {str(e)}")
background_tasks.add_task(cleanup_file, temp_file_path)
logger.info(f"Kannada PDF generation completed in {time() - start_time:.2f} seconds")
return FileResponse(
path=temp_file_path,
filename="generated_kannada.pdf",
media_type="application/pdf",
headers=headers
)
except requests.Timeout:
logger.error("External Kannada PDF API timed out")
raise HTTPException(status_code=504, detail="External API timeout")
except requests.RequestException as e:
logger.error(f"External Kannada PDF API error: {str(e)}")
raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
finally:
temp_file.close()
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, summary="OpenAI-Compatible Chat Completions", description="Proxies chat completions to llama-server using OpenAI API format.", tags=["Chat"])
async def chat_completions(request: Request, body: ChatCompletionRequest):
if not body.messages:
logger.error("Messages field is empty", extra={"client_ip": request.client.host})
raise HTTPException(status_code=400, detail="Messages cannot be empty")
logger.info("Received chat completion request", extra={
"endpoint": "/v1/chat/completions",
"model": body.model,
"messages": body.messages,
"client_ip": request.client.host
})
start_time = time()
try:
response = await openai_client.chat.completions.create(
model=body.model,
messages=body.messages,
max_tokens=body.max_tokens,
temperature=body.temperature,
top_p=body.top_p,
stream=body.stream
)
if body.stream:
logger.error("Streaming requested but not supported")
raise HTTPException(status_code=400, detail="Streaming not supported")
openai_response = ChatCompletionResponse(
id=response.id,
created=response.created,
model=response.model,
choices=[
ChatCompletionChoice(
index=choice.index,
message={"role": choice.message.role, "content": choice.message.content},
finish_reason=choice.finish_reason
) for choice in response.choices
],
usage=(
{
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens
} if response.usage else None
)
)
logger.info(f"Chat completion successful in {time() - start_time:.2f} seconds", extra={
"response_length": len(response.choices[0].message.content if response.choices else 0)
})
return openai_response
except OpenAIError as e:
logger.error(f"llama-server error: {str(e)}", extra={"client_ip": request.client.host})
status_code = 504 if "timeout" in str(e).lower() else 500
raise HTTPException(status_code=status_code, detail=f"llama-server error: {str(e)}")
except Exception as e:
logger.error(f"Internal error: {str(e)}", extra={"client_ip": request.client.host})
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
external_api_base_url = os.getenv("EXTERNAL_API_BASE_URL")
if not external_api_base_url:
raise ValueError("Environment variable EXTERNAL_API_BASE_URL must be set")
external_pdf_api_base_url = os.getenv("EXTERNAL_PDF_API_BASE_URL")
if not external_pdf_api_base_url:
raise ValueError("Environment variable EXTERNAL_PDF_API_BASE_URL must be set")
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
parser.add_argument("--port", type=int, default=8000, help="Port to run the server on.")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on.")
args = parser.parse_args()
uvicorn.run(app, host=args.host, port=args.port) |