File size: 55,394 Bytes
9ec8ebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
import argparse
import os
from typing import List, Optional, Dict, Any
from abc import ABC, abstractmethod
import uvicorn
from fastapi import FastAPI, File, HTTPException, Query, Request, UploadFile, Form, Depends, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse, FileResponse
from pydantic import BaseModel, Field
import requests
from time import time
import socket
from functools import lru_cache
from fastapi.background import BackgroundTasks
import tempfile
from enum import Enum
from openai import AsyncOpenAI, OpenAIError
# Assuming these are in your project structure
from config.tts_config import SPEED, ResponseFormat, config as tts_config
from config.logging_config import logger

# FastAPI app setup
app = FastAPI(
    title="Dhwani API",
    description="A multilingual AI-powered API supporting Indian languages for chat, text-to-speech, audio processing, and transcription.",
    version="1.0.0",
    redirect_slashes=False,
    openapi_tags=[
        {"name": "Chat", "description": "Chat-related endpoints"},
        {"name": "Audio", "description": "Audio processing and TTS endpoints"},
        {"name": "Translation", "description": "Text translation endpoints"},
        {"name": "Utility", "description": "General utility endpoints"},
        {"name": "PDF", "description": "PDF processing endpoints"},
    ],
)

# Allowed origins for CORS and IP restriction
ALLOWED_ORIGINS = [
    "https://dwani.ai",
    "https://*.dwani.ai",
    "https://dwani-*.hf.space",
]

# Cache for resolved IPs
@lru_cache(maxsize=100)
def resolve_domain_to_ips(domain: str, ttl: int = 3600) -> set:
    """Resolve a domain to its IP addresses."""
    try:
        clean_domain = domain.replace("https://", "").replace("*.", "").replace("dwani-*.", "")
        ip_addresses = set()
        for info in socket.getaddrinfo(clean_domain, None, socket.AF_INET):
            ip = info[4][0]
            ip_addresses.add(ip)
        logger.debug(f"Resolved IPs for {clean_domain}: {ip_addresses}")
        return ip_addresses
    except socket.gaierror as e:
        logger.error(f"Failed to resolve domain {domain}: {str(e)}")
        return set()

async def resolve_allowed_ips() -> set:
    """Resolve all allowed origins to their IP addresses."""
    allowed_ips = set()
    for origin in ALLOWED_ORIGINS:
        if "dwani-*.hf.space" in origin:
            subdomains = [
                "dwani-prod.hf.space",
                "dwani-test.hf.space",
                "dwani-indic-image-query.hf.space"
                "dwani-dwani-server-workshop.hf.space"  # Added to allow this subdomain
            ]
            for subdomain in subdomains:
                allowed_ips.update(resolve_domain_to_ips(f"https://{subdomain}"))
        elif "*.dwani.ai" in origin:
            subdomains = ["dwani.ai", "api.dwani.ai", "app.dwani.ai"]
            for subdomain in subdomains:
                allowed_ips.update(resolve_domain_to_ips(f"https://{subdomain}"))
        else:
            allowed_ips.update(resolve_domain_to_ips(origin))
    logger.info(f"Resolved allowed IPs: {allowed_ips}")
    return allowed_ips

# Custom ASGI middleware to restrict requests by client IP
class RestrictIPMiddleware:
    def __init__(self, app):
        self.app = app

    async def __call__(self, scope: dict, receive: callable, send: callable):
        if scope["type"] != "http":
            await self.app(scope, receive, send)
            return

        client_ip = scope.get("client", ("unknown", 0))[0]
        allowed_ips = await resolve_allowed_ips()
        
        if client_ip == "unknown" or client_ip not in allowed_ips:
            logger.warning(f"Blocked request from unauthorized IP: {client_ip}")
            await send({
                "type": "http.response.start",
                "status": 403,
                "headers": [(b"content-type", b"application/json")],
            })
            await send({
                "type": "http.response.body",
                "body": b'{"detail": "Request from unauthorized IP"}',
            })
            return
        
        await self.app(scope, receive, send)

# Add middlewares
app.add_middleware(
    CORSMiddleware,
    allow_origins=[
        "https://*.hf.space",
        "https://dwani.ai",
        "https://*.dwani.ai",
        "https://dwani-*.hf.space",
    ],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
app.add_middleware(RestrictIPMiddleware)

# Request/Response Models (unchanged)
class TranscriptionResponse(BaseModel):
    text: str = Field(..., description="Transcribed text from the audio")
    class Config:
        json_schema_extra = {"example": {"text": "Hello, how are you?"}} 

class TextGenerationResponse(BaseModel):
    text: str = Field(..., description="Generated text response")
    class Config:
        json_schema_extra = {"example": {"text": "Hi there, I'm doing great!"}} 

class AudioProcessingResponse(BaseModel):
    result: str = Field(..., description="Processed audio result")
    class Config:
        json_schema_extra = {"example": {"result": "Processed audio output"}} 

class ChatRequest(BaseModel):
    prompt: str = Field(..., description="Prompt for chat (max 1000 characters)")
    src_lang: str = Field(..., description="Source language code")
    tgt_lang: str = Field(..., description="Target language code")
    class Config:
        json_schema_extra = {
            "example": {
                "prompt": "Hello, how are you?",
                "src_lang": "kan_Knda",
                "tgt_lang": "kan_Knda"
            }
        }

class ChatResponse(BaseModel):
    response: str = Field(..., description="Generated chat response")
    class Config:
        json_schema_extra = {"example": {"response": "Hi there, I'm doing great!"}} 

class TranslationRequest(BaseModel):
    sentences: List[str] = Field(..., description="List of sentences to translate")
    src_lang: str = Field(..., description="Source language code")
    tgt_lang: str = Field(..., description="Target language code")
    class Config:
        json_schema_extra = {
            "example": {
                "sentences": ["Hello", "How are you?"],
                "src_lang": "en",
                "tgt_lang": "kan_Knda"
            }
        }

class TranslationResponse(BaseModel):
    translations: List[str] = Field(..., description="Translated sentences")
    class Config:
        json_schema_extra = {"example": {"translations": ["ನಮಸ್ಕಾರ", "ನೀವು ಹೇಗಿದ್ದೀರಿ?"]}} 

class VisualQueryRequest(BaseModel):
    query: str = Field(..., description="Text query")
    src_lang: str = Field(..., description="Source language code")
    tgt_lang: str = Field(..., description="Target language code")
    class Config:
        json_schema_extra = {
            "example": {
                "query": "Describe the image",
                "src_lang": "kan_Knda",
                "tgt_lang": "kan_Knda"
            }
        }

class VisualQueryResponse(BaseModel):
    answer: str
    class Config:
        json_schema_extra = {"example": {"answer": "The image shows a screenshot of a webpage."}}

class PDFTextExtractionResponse(BaseModel):
    page_content: str = Field(..., description="Extracted text from the specified PDF page")
    class Config:
        json_schema_extra = {
            "example": {
                "page_content": "Google Interview Preparation Guide\nCustomer Engineer Specialist\n\nOur hiring process\n..."
            }
        }

class DocumentProcessPage(BaseModel):
    processed_page: int = Field(..., description="Page number of the extracted text")
    page_content: str = Field(..., description="Extracted text from the page")
    translated_content: Optional[str] = Field(None, description="Translated text of the page, if applicable")
    class Config:
        json_schema_extra = {
            "example": {
                "processed_page": 1,
                "page_content": "Okay, here's a plain text representation of the document...",
                "translated_content": "ಸರಿ, ಇಲ್ಲಿ ಡಾಕ್ಯುಮೆಂಟ್ನ ಸರಳ ಪಠ್ಯ ಪ್ರಾತಿನಿಧ್ಯವಿದೆ..."
            }
        }

class DocumentProcessResponse(BaseModel):
    pages: List[DocumentProcessPage] = Field(..., description="List of pages with extracted and translated text")
    class Config:
        json_schema_extra = {
            "example": {
                "pages": [
                    {
                        "processed_page": 1,
                        "page_content": "Okay, here's a plain text representation of the document...\n\n**Electronic Reservation Slip (ERS) - Normal User**\n...",
                        "translated_content": "ಸರಿ, ಇಲ್ಲಿ ಡಾಕ್ಯುಮೆಂಟ್ನ ಸರಳ ಪಠ್ಯ ಪ್ರಾತಿನಿಧ್ಯವಿದೆ...\n\n**ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೀಸಲಾತಿ ಸ್ಲಿಪ್ (ಇಆರ್ಎಸ್) - ಸಾಮಾನ್ಯ ಬಳಕೆದಾರ**\n..."
                    }
                ]
            }
        }

class SummarizePDFResponse(BaseModel):
    original_text: str = Field(..., description="Extracted text from the specified page")
    summary: str = Field(..., description="Summary of the specified page")
    processed_page: int = Field(..., description="Page number processed")
    class Config:
        json_schema_extra = {
            "example": {
                "original_text": "Okay, here's a plain text representation of the document...\n\nElectronic Reservation Slip (ERS)...",
                "summary": "This ERS details a sleeper class train booking (17307/Basava Express) from KSR Bengaluru to Kalaburagi...",
                "processed_page": 1
            }
        }

class IndicSummarizePDFResponse(BaseModel):
    original_text: str = Field(..., description="Extracted text from the specified page")
    summary: str = Field(..., description="Summary of the specified page in the source language")
    translated_summary: str = Field(..., description="Summary translated into the target language")
    processed_page: int = Field(..., description="Page number processed")
    class Config:
        json_schema_extra = {
            "example": {
                "original_text": "Okay, here's a plain text representation of the document...\n\nElectronic Reservation Slip (ERS)...",
                "summary": "This ERS details a Sleeper Class train booking for passenger Anand on Train 17307 (Basava Express)...",
                "translated_summary": "ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಮೀಸಲಾತಿ ಸ್ಲಿಪ್ (ಇಆರ್ಎಸ್) ನ 4-ವಾಕ್ಯಗಳ ಸಾರಾಂಶ ಹೀಗಿದೆ...",
                "processed_page": 1
            }
        }

class CustomPromptPDFResponse(BaseModel):
    original_text: str = Field(..., description="Extracted text from the specified page")
    response: str = Field(..., description="Response based on the custom prompt")
    processed_page: int = Field(..., description="Page number processed")
    class Config:
        json_schema_extra = {
            "example": {
                "original_text": "Okay, here's a plain text representation of the document...\n\n**Clevertronic**\nBestellnummer: 801772347...",
                "response": "Okay, here’s a list of the key points from the document:\n* Company Information: Clevertronic GmbH...",
                "processed_page": 1
            }
        }

class IndicCustomPromptPDFResponse(BaseModel):
    original_text: str = Field(..., description="Extracted text from the specified page")
    response: str = Field(..., description="Response based on the custom prompt")
    translated_response: str = Field(..., description="Translated response in the target language")
    processed_page: int = Field(..., description="Page number processed")
    class Config:
        json_schema_extra = {
            "example": {
                "original_text": "Okay, here's a plain text representation of the document...\n\n**Clevertronic. Voll. Venture GmbH**...",
                "response": "Okay, here’s a list of key points from the document:\n* Company Information: Clevertronic. Voll. Venture GmbH...",
                "translated_response": "ಸರಿ, ಡಾಕ್ಯುಮೆಂಟ್ನ ಪ್ರಮುಖ ಅಂಶಗಳ ಪಟ್ಟಿ ಹೀಗಿದೆ...\n* ಕಂಪನಿ ಮಾಹಿತಿ: ಕ್ಲೆವರ್ಟ್ರಾನಿಕ್. ಮತಪತ್ರ. ವೆಂಚರ್ ಜಿಎಂಬಿಎಚ್...",
                "processed_page": 1
            }
        }

class ChatCompletionRequest(BaseModel):
    model: str = Field(default="gemma-3-12b-it", description="Model identifier")
    messages: List[Dict[str, str]] = Field(..., description="List of messages")
    max_tokens: Optional[int] = Field(None, description="Maximum tokens to generate")
    temperature: Optional[float] = Field(1.0, description="Sampling temperature")
    top_p: Optional[float] = Field(1.0, description="Nucleus sampling parameter")
    stream: Optional[bool] = Field(False, description="Whether to stream the response")
    class Config:
        json_schema_extra = {
            "example": {
                "model": "gemma-3-12b-it",
                "messages": [{"role": "user", "content": "Hello!"}],
                "max_tokens": 100,
                "temperature": 1.0,
                "top_p": 1.0,
                "stream": False
            }
        }

class ChatCompletionChoice(BaseModel):
    index: int
    message: Dict[str, str]
    finish_reason: Optional[str]
    class Config:
        json_schema_extra = {
            "example": {
                "index": 0,
                "message": {"role": "assistant", "content": "Hi there!"},
                "finish_reason": "stop"
            }
        }

class ChatCompletionResponse(BaseModel):
    id: str
    object: str = "chat.completion"
    created: int
    model: str
    choices: List[ChatCompletionChoice]
    usage: Optional[Dict[str, int]] = None
    class Config:
        json_schema_extra = {
            "example": {
                "id": "chatcmpl-123",
                "object": "chat.completion",
                "created": 1698765432,
                "model": "gemma-3-12b-it",
                "choices": [{"index": 0, "message": {"role": "assistant", "content": "Hi there!"}, "finish_reason": "stop"}],
                "usage": {"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}
            }
        }

# TTS Service Interface
class TTSService(ABC):
    @abstractmethod
    async def generate_speech(self, payload: dict) -> requests.Response:
        pass

class ExternalTTSService(TTSService):
    async def generate_speech(self, payload: dict) -> requests.Response:
        try:
            base_url = f"{os.getenv('EXTERNAL_API_BASE_URL')}/v1/audio/speech"
            return requests.post(
                base_url,
                json=payload,
                headers={"accept": "*/*", "Content-Type": "application/json"},
                stream=True,
                timeout=60
            )
        except requests.Timeout:
            logger.error("External TTS API timeout")
            raise HTTPException(status_code=504, detail="External TTS API timeout")
        except requests.RequestException as e:
            logger.error(f"External TTS API error: {str(e)}")
            raise HTTPException(status_code=502, detail=f"External TTS service error: {str(e)}")

def get_tts_service() -> TTSService:
    return ExternalTTSService()

# Initialize OpenAI client
openai_client = AsyncOpenAI(
    base_url=os.getenv("DWANI_AI_LLM_URL"),
    api_key=os.getenv("DWANI_AI_LLM_API_KEY", ""),
    timeout=30.0
)

# Endpoints (unchanged)
@app.get("/v1/health", summary="Check API Health", description="Returns the health status of the API and the current model in use.", tags=["Utility"], response_model=dict)
async def health_check():
    return {"status": "healthy", "model": "llm_model_name"}

@app.get("/", summary="Redirect to Docs", description="Redirects to the Swagger UI documentation.", tags=["Utility"])
async def home():
    return RedirectResponse(url="/docs")

@app.post("/v1/audio/speech", summary="Generate Speech from Text", description="Convert text to speech using an external TTS service and return as a downloadable audio file.", tags=["Audio"])
async def generate_audio(
    request: Request,
    input: str = Query(..., description="Text to convert to speech (max 1000 characters)"),
    response_format: str = Query("mp3", description="Audio format (ignored, defaults to mp3 for external API)"),
    tts_service: TTSService = Depends(get_tts_service),
    background_tasks: BackgroundTasks = BackgroundTasks()
):
    if not input.strip():
        raise HTTPException(status_code=400, detail="Input cannot be empty")
    if len(input) > 1000:
        raise HTTPException(status_code=400, detail="Input cannot exceed 1000 characters")
    
    logger.info("Processing speech request", extra={
        "endpoint": "/v1/audio/speech",
        "input_length": len(input),
        "client_ip": request.client.host
    })
    
    payload = {"text": input}
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
    temp_file_path = temp_file.name
    
    try:
        response = await tts_service.generate_speech(payload)
        response.raise_for_status()
        
        with open(temp_file_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)
        
        headers = {
            "Content-Disposition": "attachment; filename=\"speech.mp3\"",
            "Cache-Control": "no-cache",
        }
        
        def cleanup_file(file_path: str):
            try:
                if os.path.exists(file_path):
                    os.unlink(file_path)
                    logger.info(f"Deleted temporary file: {file_path}")
            except Exception as e:
                logger.error(f"Failed to delete temporary file {file_path}: {str(e)}")
        
        background_tasks.add_task(cleanup_file, temp_file_path)
        return FileResponse(
            path=temp_file_path,
            filename="speech.mp3",
            media_type="audio/mp3",
            headers=headers
        )
    except requests.HTTPError as e:
        logger.error(f"External TTS request failed: {str(e)}")
        raise HTTPException(status_code=502, detail=f"External TTS service error: {str(e)}")
    finally:
        temp_file.close()

@app.post("/v1/indic_chat", response_model=ChatResponse, summary="Chat with AI", description="Generate a chat response from a prompt and language code.", tags=["Chat"])
async def chat(request: Request, chat_request: ChatRequest):
    if not chat_request.prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    if len(chat_request.prompt) > 1000:
        raise HTTPException(status_code=400, detail="Prompt cannot exceed 1000 characters")
    
    logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}")
    
    try:
        external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic_chat"
        payload = {
            "prompt": chat_request.prompt,
            "src_lang": chat_request.src_lang,
            "tgt_lang": chat_request.tgt_lang
        }
        
        response = requests.post(
            external_url,
            json=payload,
            headers={"accept": "application/json", "Content-Type": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        response_text = response_data.get("response", "")
        logger.info(f"Generated Chat response from external API: {response_text}")
        return ChatResponse(response=response_text)
    except requests.Timeout:
        logger.error("External chat API request timed out")
        raise HTTPException(status_code=504, detail="Chat service timeout")
    except requests.RequestException as e:
        logger.error(f"Error calling external chat API: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
    except Exception as e:
        logger.error(f"Error processing request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

@app.post("/v1/transcribe/", response_model=TranscriptionResponse, summary="Transcribe Audio File", description="Transcribe an audio file into text in the specified language.", tags=["Audio"])
async def transcribe_audio(
    file: UploadFile = File(..., description="Audio file to transcribe"),
    language: str = Query(..., description="Language of the audio (kannada, hindi, tamil)")
):
    allowed_languages = ["kannada", "hindi", "tamil"]
    if language not in allowed_languages:
        raise HTTPException(status_code=400, detail=f"Language must be one of {allowed_languages}")
    
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        external_url = f"{os.getenv('EXTERNAL_API_BASE_URL_ASR')}/transcribe/?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        transcription = response.json().get("text", "")
        logger.info(f"Transcription completed in {time() - start_time:.2f} seconds")
        return TranscriptionResponse(text=transcription)
    except requests.Timeout:
        logger.error("Transcription service timed out")
        raise HTTPException(status_code=504, detail="Transcription service timeout")
    except requests.RequestException as e:
        logger.error(f"Transcription request failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")

@app.post("/v1/translate", response_model=TranslationResponse, summary="Translate Text", description="Translate a list of sentences from a source to a target language.", tags=["Translation"])
async def translate(request: TranslationRequest):
    if not request.sentences:
        raise HTTPException(status_code=400, detail="Sentences cannot be empty")
    
    supported_languages = [
        "eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu",
        "deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn",
        "rus_Cyrl", "pol_Latn"
    ]
    if request.src_lang not in supported_languages or request.tgt_lang not in supported_languages:
        raise HTTPException(status_code=400, detail=f"Unsupported language codes: src={request.src_lang}, tgt={request.tgt_lang}")

    logger.info(f"Received translation request: {len(request.sentences)} sentences, src_lang: {request.src_lang}, tgt_lang: {request.tgt_lang}")

    external_url = f"{os.getenv('DWANI_API_BASE_URL_TRANSLATE')}"
    payload = {
        "sentences": request.sentences,
        "src_lang": request.src_lang,
        "tgt_lang": request.tgt_lang
    }
    
    try:
        response = requests.post(
            f"{external_url}/translate?src_lang={request.src_lang}&tgt_lang={request.tgt_lang}",
            json=payload,
            headers={"accept": "application/json", "Content-Type": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        translations = response_data.get("translations", [])
        
        if not translations or len(translations) != len(request.sentences):
            logger.warning(f"Unexpected response format: {response_data}")
            raise HTTPException(status_code=500, detail="Invalid response from translation service")
        
        logger.info(f"Translation successful: {translations}")
        return TranslationResponse(translations=translations)
    except requests.Timeout:
        logger.error("Translation request timed out")
        raise HTTPException(status_code=504, detail="Translation service timeout")
    except requests.RequestException as e:
        logger.error(f"Error during translation: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from translation service")

@app.post("/v1/indic_visual_query", response_model=VisualQueryResponse, summary="Visual Query with Image", description="Process a visual query with a text query, image, and language codes.", tags=["Chat"])
async def visual_query(
    request: Request,
    query: str = Form(..., description="Text query to describe or analyze the image"),
    file: UploadFile = File(..., description="Image file to analyze (e.g., PNG, JPEG)"),
    src_lang: str = Query(..., description="Source language code (e.g., kan_Knda, en)"),
    tgt_lang: str = Query(..., description="Target language code (e.g., kan_Knda, en)")
):
    if not query.strip():
        raise HTTPException(status_code=400, detail="Query cannot be empty")
    if len(query) > 1000:
        raise HTTPException(status_code=400, detail="Query cannot exceed 1000 characters")
    
    supported_languages = ["kan_Knda", "hin_Deva", "tam_Taml", "eng_Latn"]
    if src_lang not in supported_languages:
        raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
    if tgt_lang not in supported_languages:
        raise HTTPException(status_code=400, detail=f"Unsupported target language: {tgt_lang}")
    
    logger.info("Processing visual query request", extra={
        "endpoint": "/v1/indic_visual_query",
        "query_length": len(query),
        "file_name": file.filename,
        "client_ip": request.client.host,
        "src_lang": src_lang,
        "tgt_lang": tgt_lang
    })
    
    external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-visual-query/"
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        data = {
            "prompt": query,
            "source_language": src_lang,
            "target_language": tgt_lang
        }
        
        response = requests.post(
            external_url,
            files=files,
            data=data,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        answer = response_data.get("response", "")
        
        if not answer:
            logger.warning(f"Empty or missing 'response' field in external API response: {response_data}")
            raise HTTPException(status_code=500, detail="No valid response provided by visual query service")
        
        logger.info(f"Visual query successful: {answer}")
        return VisualQueryResponse(answer=answer)
    except requests.Timeout:
        logger.error("Visual query request timed out")
        raise HTTPException(status_code=504, detail="Visual query service timeout")
    except requests.RequestException as e:
        logger.error(f"Error during visual query: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Visual query failed: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from visual query service")

class SupportedLanguage(str, Enum):
    kannada = "kannada"
    hindi = "hindi"
    tamil = "tamil"

@app.post("/v1/speech_to_speech", summary="Speech-to-Speech Conversion", description="Convert input speech to processed speech in the specified language.", tags=["Audio"])
async def speech_to_speech(
    request: Request,
    file: UploadFile = File(..., description="Audio file to process"),
    language: str = Query(..., description="Language of the audio (kannada, hindi, tamil)")
) -> StreamingResponse:
    allowed_languages = [lang.value for lang in SupportedLanguage]
    if language not in allowed_languages:
        raise HTTPException(status_code=400, detail=f"Language must be one of {allowed_languages}")
    
    logger.info("Processing speech-to-speech request", extra={
        "endpoint": "/v1/speech_to_speech",
        "audio_filename": file.filename,
        "language": language,
        "client_ip": request.client.host
    })

    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        external_url = f"{os.getenv('EXTERNAL_API_BASE_URL')}/v1/speech_to_speech?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            stream=True,
            timeout=60
        )
        response.raise_for_status()
        
        headers = {
            "Content-Disposition": f"inline; filename=\"speech.mp3\"",
            "Cache-Control": "no-cache",
            "Content-Type": "audio/mp3"
        }
        
        return StreamingResponse(
            response.iter_content(chunk_size=8192),
            media_type="audio/mp3",
            headers=headers
        )
    except requests.Timeout:
        logger.error("External speech-to-speech API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External speech-to-speech API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")

@app.post("/v1/extract-text", response_model=PDFTextExtractionResponse, summary="Extract Text from PDF", description="Extract text from a specified page of a PDF file.", tags=["PDF"])
async def extract_text(
    request: Request,
    file: UploadFile = File(..., description="PDF file to extract text from"),
    page_number: int = Query(1, description="Page number to extract text from (1-based indexing)")
):
    if page_number < 1:
        raise HTTPException(status_code=400, detail="Page number must be at least 1")
    
    logger.info("Processing PDF text extraction request", extra={
        "endpoint": "/v1/extract-text",
        "file_name": file.filename,
        "page_number": page_number,
        "client_ip": request.client.host
    })
    
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/extract-text/?page_number={page_number}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        extracted_text = response_data.get("page_content", "")
        if not extracted_text:
            logger.warning("No page_content found in external API response")
            extracted_text = ""
        
        logger.info(f"PDF text extraction completed in {time() - start_time:.2f} seconds")
        return PDFTextExtractionResponse(page_content=extracted_text.strip())
    except requests.Timeout:
        logger.error("External PDF extraction API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External PDF extraction API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response from external API: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from external API")

@app.post("/v1/indic-extract-text/", response_model=DocumentProcessResponse, tags=["PDF"])
async def extract_and_translate(
    file: UploadFile = File(...),
    page_number: int = 1,
    src_lang: str = "eng_Latn",
    tgt_lang: str = "kan_Knda"
):
    if not file.filename.endswith(".pdf"):
        raise HTTPException(status_code=400, detail="Only PDF files are supported")
    
    url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-extract-text/"
    headers = {"accept": "application/json"}
    files = {"file": (file.filename, await file.read(), "application/pdf")}
    data = {"page_number": str(page_number), "src_lang": src_lang, "tgt_lang": tgt_lang}
    
    try:
        response = requests.post(url, headers=headers, files=files, data=data)
        if response.status_code != 200:
            raise HTTPException(status_code=response.status_code, detail=f"External API error: {response.text}")
        
        api_response = response.json()
        page_content = api_response.get("page_content", "")
        translated_content = api_response.get("translated_content", "")
        page = DocumentProcessPage(
            processed_page=page_number,
            page_content=page_content,
            translated_content=translated_content
        )
        return DocumentProcessResponse(pages=[page])
    except requests.RequestException as e:
        raise HTTPException(status_code=500, detail=f"Error calling external API: {str(e)}")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
    finally:
        await file.close()

@app.post("/v1/summarize-pdf", response_model=SummarizePDFResponse, summary="Summarize a Specific Page of a PDF", description="Summarize the content of a specific page of a PDF file.", tags=["PDF"])
async def summarize_pdf(
    request: Request,
    file: UploadFile = File(..., description="PDF file to summarize"),
    page_number: int = Form(..., description="Page number to summarize (1-based indexing)")
):
    if not file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="File must be a PDF")
    if page_number < 1:
        raise HTTPException(status_code=400, detail="Page number must be at least 1")
    
    logger.info("Processing PDF summary request", extra={
        "endpoint": "/summarize-pdf",
        "file_name": file.filename,
        "page_number": page_number,
        "client_ip": request.client.host
    })
    
    external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/summarize-pdf"
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, "application/pdf")}
        data = {"page_number": page_number}
        response = requests.post(
            external_url,
            files=files,
            data=data,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        original_text = response_data.get("original_text", "")
        summary = response_data.get("summary", "")
        processed_page = response_data.get("processed_page", page_number)
        
        if not original_text or not summary:
            logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, summary={'present' if summary else 'missing'}")
            return SummarizePDFResponse(
                original_text=original_text or "No text extracted",
                summary=summary or "No summary provided",
                processed_page=processed_page
            )
        
        logger.info(f"PDF summary completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
        return SummarizePDFResponse(
            original_text=original_text,
            summary=summary,
            processed_page=processed_page
        )
    except requests.Timeout:
        logger.error("External PDF summary API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External PDF summary API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response from external API: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from external API")

@app.post("/v1/indic-summarize-pdf", response_model=IndicSummarizePDFResponse, summary="Summarize and Translate a Specific Page of a PDF", description="Summarize and translate the content of a specific page of a PDF.", tags=["PDF"])
async def indic_summarize_pdf(
    request: Request,
    file: UploadFile = File(..., description="PDF file to summarize"),
    page_number: int = Form(..., description="Page number to summarize (1-based indexing)"),
    src_lang: str = Form(..., description="Source language code (e.g., eng_Latn)"),
    tgt_lang: str = Form(..., description="Target language code (e.g., kan_Knda)")
):
    if not file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="File must be a PDF")
    if page_number < 1:
        raise HTTPException(status_code=400, detail="Page number must be at least 1")
    
    supported_languages = [
        "eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu",
        "deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn",
        "rus_Cyrl", "pol_Latn"
    ]
    if src_lang not in supported_languages:
        raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
    if tgt_lang not in supported_languages:
        raise HTTPException(status_code=400, detail=f"Unsupported target language: {tgt_lang}")
    
    logger.info("Processing Indic PDF summary request", extra={
        "endpoint": "/indic-summarize-pdf",
        "file_name": file.filename,
        "page_number": page_number,
        "src_lang": src_lang,
        "tgt_lang": tgt_lang,
        "client_ip": request.client.host
    })
    
    external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-summarize-pdf"
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, "application/pdf")}
        data = {"page_number": page_number, "src_lang": src_lang, "tgt_lang": tgt_lang}
        response = requests.post(
            external_url,
            files=files,
            data=data,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        original_text = response_data.get("original_text", "")
        summary = response_data.get("summary", "")
        translated_summary = response_data.get("translated_summary", "")
        processed_page = response_data.get("processed_page", page_number)
        
        if not original_text or not summary or not translated_summary:
            logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, summary={'present' if summary else 'missing'}, translated_summary={'present' if translated_summary else 'missing'}")
            return IndicSummarizePDFResponse(
                original_text=original_text or "No text extracted",
                summary=summary or "No summary provided",
                translated_summary=translated_summary or "No translated summary provided",
                processed_page=processed_page
            )
        
        logger.info(f"Indic PDF summary completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
        return IndicSummarizePDFResponse(
            original_text=original_text,
            summary=summary,
            translated_summary=translated_summary,
            processed_page=processed_page
        )
    except requests.Timeout:
        logger.error("External Indic PDF summary API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External Indic PDF summary API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response from external API: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from external API")

@app.post("/v1/custom-prompt-pdf", response_model=CustomPromptPDFResponse, summary="Process a PDF with a Custom Prompt", description="Extract text from a specific page of a PDF and process it with a custom prompt.", tags=["PDF"])
async def custom_prompt_pdf(
    request: Request,
    file: UploadFile = File(..., description="PDF file to process"),
    page_number: int = Form(..., description="Page number to process (1-based indexing)"),
    prompt: str = Form(..., description="Custom prompt to process the page content")
):
    if not file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="File must be a PDF")
    if page_number < 1:
        raise HTTPException(status_code=400, detail="Page number must be at least 1")
    if not prompt.strip():
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    logger.info("Processing custom prompt PDF request", extra={
        "endpoint": "/custom-prompt-pdf",
        "file_name": file.filename,
        "page_number": page_number,
        "prompt": prompt,
        "client_ip": request.client.host
    })
    
    external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/custom-prompt-pdf"
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, "application/pdf")}
        data = {"page_number": page_number, "prompt": prompt}
        response = requests.post(
            external_url,
            files=files,
            data=data,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        original_text = response_data.get("original_text", "")
        custom_response = response_data.get("response", "")
        processed_page = response_data.get("processed_page", page_number)
        
        if not original_text or not custom_response:
            logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, response={'present' if custom_response else 'missing'}")
            return CustomPromptPDFResponse(
                original_text=original_text or "No text extracted",
                response=custom_response or "No response provided",
                processed_page=processed_page
            )
        
        logger.info(f"Custom prompt PDF processing completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
        return CustomPromptPDFResponse(
            original_text=original_text,
            response=custom_response,
            processed_page=processed_page
        )
    except requests.Timeout:
        logger.error("External custom prompt PDF API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External custom prompt PDF API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response from external API: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from external API")

@app.post("/v1/indic-custom-prompt-pdf", response_model=IndicCustomPromptPDFResponse, summary="Process a PDF with a Custom Prompt and Translation", description="Extract text, process with a custom prompt, and translate the response.", tags=["PDF"])
async def indic_custom_prompt_pdf(
    request: Request,
    file: UploadFile = File(..., description="PDF file to process"),
    page_number: int = Form(..., description="Page number to process (1-based indexing)"),
    prompt: str = Form(..., description="Custom prompt to process the page content"),
    source_language: str = Form(..., description="Source language code (e.g., eng_Latn)"),
    target_language: str = Form(..., description="Target language code (e.g., kan_Knda)")
):
    if not file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="File must be a PDF")
    if page_number < 1:
        raise HTTPException(status_code=400, detail="Page number must be at least 1")
    if not prompt.strip():
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    if not source_language.strip() or not target_language.strip():
        raise HTTPException(status_code=400, detail="Source and target language codes cannot be empty")
    
    logger.info("Processing indic custom prompt PDF request", extra={
        "endpoint": "/indic-custom-prompt-pdf",
        "file_name": file.filename,
        "page_number": page_number,
        "prompt": prompt,
        "source_language": source_language,
        "target_language": target_language,
        "client_ip": request.client.host
    })
    
    external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-custom-prompt-pdf"
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, "application/pdf")}
        data = {
            "page_number": page_number,
            "prompt": prompt,
            "source_language": source_language,
            "target_language": target_language
        }
        response = requests.post(
            external_url,
            files=files,
            data=data,
            headers={"accept": "application/json"},
            timeout=60
        )
        response.raise_for_status()
        
        response_data = response.json()
        original_text = response_data.get("original_text", "")
        custom_response = response_data.get("response", "")
        translated_response = response_data.get("translated_response", "")
        processed_page = response_data.get("processed_page", page_number)
        
        if not original_text or not custom_response or not translated_response:
            logger.warning(f"Incomplete response: original_text={'present' if original_text else 'missing'}, response={'present' if custom_response else 'missing'}, translated_response={'present' if translated_response else 'missing'}")
            return IndicCustomPromptPDFResponse(
                original_text=original_text or "No text extracted",
                response=custom_response or "No response provided",
                translated_response=translated_response or "No translated response provided",
                processed_page=processed_page
            )
        
        logger.info(f"Indic custom prompt PDF processing completed in {time() - start_time:.2f} seconds, page processed: {processed_page}")
        return IndicCustomPromptPDFResponse(
            original_text=original_text,
            response=custom_response,
            translated_response=translated_response,
            processed_page=processed_page
        )
    except requests.Timeout:
        logger.error("External indic custom prompt PDF API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External indic custom prompt PDF API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
    except ValueError as e:
        logger.error(f"Invalid JSON response from external API: {str(e)}")
        raise HTTPException(status_code=500, detail="Invalid response format from external API")

@app.post("/v1/indic-custom-prompt-kannada-pdf", summary="Generate Kannada PDF with Custom Prompt", description="Process a PDF with a custom prompt and generate a new PDF in Kannada.", tags=["PDF"])
async def indic_custom_prompt_kannada_pdf(
    request: Request,
    file: UploadFile = File(..., description="PDF file to process"),
    page_number: int = Form(..., description="Page number to process (1-based indexing)"),
    prompt: str = Form(..., description="Custom prompt to process the page content"),
    src_lang: str = Form(..., description="Source language code (e.g., eng_Latn)"),
    background_tasks: BackgroundTasks = BackgroundTasks()
):
    if not file.filename.lower().endswith('.pdf'):
        raise HTTPException(status_code=400, detail="File must be a PDF")
    if page_number < 1:
        raise HTTPException(status_code=400, detail="Page number must be at least 1")
    if not prompt.strip():
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    supported_languages = ["eng_Latn", "hin_Deva", "kan_Knda", "tam_Taml", "mal_Mlym", "tel_Telu"]
    if src_lang not in supported_languages:
        raise HTTPException(status_code=400, detail=f"Unsupported source language: {src_lang}")
    
    logger.info("Processing Kannada PDF generation request", extra={
        "endpoint": "/v1/indic-custom-prompt-kannada-pdf",
        "file_name": file.filename,
        "page_number": page_number,
        "prompt": prompt,
        "src_lang": src_lang,
        "client_ip": request.client.host
    })
    
    external_url = f"{os.getenv('EXTERNAL_PDF_API_BASE_URL')}/indic-custom-prompt-kannada-pdf/"
    start_time = time()
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
    temp_file_path = temp_file.name
    
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, "application/pdf")}
        data = {"page_number": page_number, "prompt": prompt, "src_lang": src_lang}
        response = requests.post(
            external_url,
            files=files,
            data=data,
            headers={"accept": "application/json"},
            stream=True,
            timeout=60
        )
        response.raise_for_status()
        
        with open(temp_file_path, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)
        
        headers = {
            "Content-Disposition": "attachment; filename=\"generated_kannada.pdf\"",
            "Cache-Control": "no-cache",
        }
        
        def cleanup_file(file_path: str):
            try:
                if os.path.exists(file_path):
                    os.unlink(file_path)
                    logger.info(f"Deleted temporary file: {file_path}")
            except Exception as e:
                logger.error(f"Failed to delete temporary file {file_path}: {str(e)}")
        
        background_tasks.add_task(cleanup_file, temp_file_path)
        logger.info(f"Kannada PDF generation completed in {time() - start_time:.2f} seconds")
        return FileResponse(
            path=temp_file_path,
            filename="generated_kannada.pdf",
            media_type="application/pdf",
            headers=headers
        )
    except requests.Timeout:
        logger.error("External Kannada PDF API timed out")
        raise HTTPException(status_code=504, detail="External API timeout")
    except requests.RequestException as e:
        logger.error(f"External Kannada PDF API error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"External API error: {str(e)}")
    finally:
        temp_file.close()

@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, summary="OpenAI-Compatible Chat Completions", description="Proxies chat completions to llama-server using OpenAI API format.", tags=["Chat"])
async def chat_completions(request: Request, body: ChatCompletionRequest):
    if not body.messages:
        logger.error("Messages field is empty", extra={"client_ip": request.client.host})
        raise HTTPException(status_code=400, detail="Messages cannot be empty")
    
    logger.info("Received chat completion request", extra={
        "endpoint": "/v1/chat/completions",
        "model": body.model,
        "messages": body.messages,
        "client_ip": request.client.host
    })
    
    start_time = time()
    try:
        response = await openai_client.chat.completions.create(
            model=body.model,
            messages=body.messages,
            max_tokens=body.max_tokens,
            temperature=body.temperature,
            top_p=body.top_p,
            stream=body.stream
        )
        
        if body.stream:
            logger.error("Streaming requested but not supported")
            raise HTTPException(status_code=400, detail="Streaming not supported")
        
        openai_response = ChatCompletionResponse(
            id=response.id,
            created=response.created,
            model=response.model,
            choices=[
                ChatCompletionChoice(
                    index=choice.index,
                    message={"role": choice.message.role, "content": choice.message.content},
                    finish_reason=choice.finish_reason
                ) for choice in response.choices
            ],
            usage=(
                {
                    "prompt_tokens": response.usage.prompt_tokens,
                    "completion_tokens": response.usage.completion_tokens,
                    "total_tokens": response.usage.total_tokens
                } if response.usage else None
            )
        )
        
        logger.info(f"Chat completion successful in {time() - start_time:.2f} seconds", extra={
            "response_length": len(response.choices[0].message.content if response.choices else 0)
        })
        return openai_response
    except OpenAIError as e:
        logger.error(f"llama-server error: {str(e)}", extra={"client_ip": request.client.host})
        status_code = 504 if "timeout" in str(e).lower() else 500
        raise HTTPException(status_code=status_code, detail=f"llama-server error: {str(e)}")
    except Exception as e:
        logger.error(f"Internal error: {str(e)}", extra={"client_ip": request.client.host})
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

if __name__ == "__main__":
    external_api_base_url = os.getenv("EXTERNAL_API_BASE_URL")
    if not external_api_base_url:
        raise ValueError("Environment variable EXTERNAL_API_BASE_URL must be set")
    
    external_pdf_api_base_url = os.getenv("EXTERNAL_PDF_API_BASE_URL")
    if not external_pdf_api_base_url:
        raise ValueError("Environment variable EXTERNAL_PDF_API_BASE_URL must be set")
    
    parser = argparse.ArgumentParser(description="Run the FastAPI server.")
    parser.add_argument("--port", type=int, default=8000, help="Port to run the server on.")
    parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on.")
    args = parser.parse_args()
    uvicorn.run(app, host=args.host, port=args.port)