Car_Classifier / app.py
dupthotshering's picture
Create app.py
c4ce074 verified
raw
history blame contribute delete
762 Bytes
import gradio as gr
from transformers import pipeline
# Load the image classification model
pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier")
# Define the prediction function
def predict(input_img):
predictions = pipe(input_img)
return input_img, {p["label"]: p["score"] for p in predictions}
# Create Gradio UI
gradio_app = gr.Interface(
fn=predict,
inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"),
outputs=[
gr.Image(label="Processed Image"),
gr.Label(label="Car Model Type", num_top_classes=3)
],
title="Car Classifier",
description="Upload an image of a car and get the predicted class"
)
# Launch the Gradio app
gradio_app.launch()