Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the image classification model
|
5 |
+
pipe = pipeline("image-classification", model="SriramSridhar78/sriram-car-classifier")
|
6 |
+
|
7 |
+
# Define the prediction function
|
8 |
+
def predict(input_img):
|
9 |
+
predictions = pipe(input_img)
|
10 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
11 |
+
|
12 |
+
# Create Gradio UI
|
13 |
+
gradio_app = gr.Interface(
|
14 |
+
fn=predict,
|
15 |
+
inputs=gr.Image(label="Upload Car Image", sources=['upload', 'webcam'], type="pil"),
|
16 |
+
outputs=[
|
17 |
+
gr.Image(label="Processed Image"),
|
18 |
+
gr.Label(label="Car Model Type", num_top_classes=3)
|
19 |
+
],
|
20 |
+
title="Car Classifier",
|
21 |
+
description="Upload an image of a car and get the predicted class"
|
22 |
+
)
|
23 |
+
|
24 |
+
# Launch the Gradio app
|
25 |
+
gradio_app.launch()
|