dupthotshering's picture
Create app.py
08f2c4b verified
raw
history blame contribute delete
751 Bytes
from transformers import pipeline
import gradio as gr
def image_classifier(image):
classifier = pipeline("image-classification", model="dupthotshering/bhutanese-textile-model")
results = classifier(image)
# Convert results into a dictionary with class names as keys
formatted_results = {result['label']: result['score'] for result in results}
return formatted_results
# Define Gradio interface
demo = gr.Interface(
fn=image_classifier,
inputs=gr.Image(type="pil"), # Ensure input is an image
outputs=gr.Label(num_top_classes=7), # Display all class scores
title="Bhutanese Textile Classifier",
description="Upload an image to classify it into one of the Bhutanese textile categories."
)
demo.launch()