from transformers import pipeline import gradio as gr def image_classifier(image): classifier = pipeline("image-classification", model="dupthotshering/bhutanese-textile-model") results = classifier(image) # Convert results into a dictionary with class names as keys formatted_results = {result['label']: result['score'] for result in results} return formatted_results # Define Gradio interface demo = gr.Interface( fn=image_classifier, inputs=gr.Image(type="pil"), # Ensure input is an image outputs=gr.Label(num_top_classes=7), # Display all class scores title="Bhutanese Textile Classifier", description="Upload an image to classify it into one of the Bhutanese textile categories." ) demo.launch()