Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,43 +36,39 @@ def compute_embeddings(problems):
|
|
36 |
return model.encode(problems, normalize_embeddings=True)
|
37 |
|
38 |
def find_similar_problems(df, similarity_threshold=0.9):
|
39 |
-
"""Find similar problems using cosine similarity, optimized
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
msg = st.status("π Computing problem embeddings...")
|
44 |
-
status_msgs.append(msg)
|
45 |
start_time = time.time()
|
46 |
embeddings = compute_embeddings(df['problem'].tolist())
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
|
|
51 |
|
52 |
-
|
53 |
-
status_msgs.append(msg)
|
54 |
-
|
55 |
num_problems = len(df)
|
56 |
upper_triangle_indices = np.triu_indices(num_problems, k=1)
|
57 |
|
|
|
58 |
i_indices, j_indices = upper_triangle_indices
|
59 |
similarity_scores = similarity_matrix[i_indices, j_indices]
|
60 |
|
|
|
61 |
mask = similarity_scores > similarity_threshold
|
62 |
filtered_i = i_indices[mask]
|
63 |
filtered_j = j_indices[mask]
|
64 |
filtered_scores = similarity_scores[mask]
|
65 |
|
|
|
66 |
pairs = [
|
67 |
(df.iloc[i]["uuid"], df.iloc[j]["uuid"], float(score))
|
68 |
for i, j, score in zip(filtered_i, filtered_j, filtered_scores)
|
69 |
]
|
70 |
|
71 |
sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
|
72 |
-
|
73 |
-
for msg in status_msgs:
|
74 |
-
msg.empty()
|
75 |
-
|
76 |
st.success(f"β
Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="π")
|
77 |
|
78 |
return sorted_pairs
|
|
|
36 |
return model.encode(problems, normalize_embeddings=True)
|
37 |
|
38 |
def find_similar_problems(df, similarity_threshold=0.9):
|
39 |
+
"""Find similar problems using cosine similarity, optimized for speed."""
|
40 |
|
41 |
+
st.status("π Computing problem embeddings...")
|
|
|
|
|
|
|
42 |
start_time = time.time()
|
43 |
embeddings = compute_embeddings(df['problem'].tolist())
|
44 |
+
st.success("β
Embeddings computed!", icon="β
")
|
45 |
+
|
46 |
+
st.status("π Computing cosine similarity matrix...")
|
47 |
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
48 |
+
st.success("β
Similarity matrix computed!", icon="β
")
|
49 |
|
50 |
+
# Use numpy.triu_indices to efficiently get upper-triangle indices (excluding diagonal)
|
|
|
|
|
51 |
num_problems = len(df)
|
52 |
upper_triangle_indices = np.triu_indices(num_problems, k=1)
|
53 |
|
54 |
+
st.status("π Filtering similar problems...")
|
55 |
i_indices, j_indices = upper_triangle_indices
|
56 |
similarity_scores = similarity_matrix[i_indices, j_indices]
|
57 |
|
58 |
+
# Filter based on threshold
|
59 |
mask = similarity_scores > similarity_threshold
|
60 |
filtered_i = i_indices[mask]
|
61 |
filtered_j = j_indices[mask]
|
62 |
filtered_scores = similarity_scores[mask]
|
63 |
|
64 |
+
# Convert results into a sorted list of tuples
|
65 |
pairs = [
|
66 |
(df.iloc[i]["uuid"], df.iloc[j]["uuid"], float(score))
|
67 |
for i, j, score in zip(filtered_i, filtered_j, filtered_scores)
|
68 |
]
|
69 |
|
70 |
sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
|
71 |
+
|
|
|
|
|
|
|
72 |
st.success(f"β
Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="π")
|
73 |
|
74 |
return sorted_pairs
|