dsleo commited on
Commit
12311e1
Β·
verified Β·
1 Parent(s): 8026d59

removed too much, adapt

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -35,20 +35,23 @@ def compute_embeddings(problems):
35
  """Compute sentence embeddings."""
36
  return model.encode(problems, normalize_embeddings=True)
37
 
38
-
39
-
40
  def find_similar_problems(df, similarity_threshold=0.9):
41
- """Find similar problems using cosine similarity, optimized for speed with clean UI updates."""
42
 
43
- status_box = st.empty()
44
- status_box.info("πŸ”„ Computing problem embeddings...")
 
 
45
  start_time = time.time()
46
  embeddings = compute_embeddings(df['problem'].tolist())
47
-
48
- status_box.info("πŸ”„ Computing cosine similarity matrix...")
 
49
  similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
50
 
51
- status_box.info("πŸ”„ Filtering similar problems...")
 
 
52
  num_problems = len(df)
53
  upper_triangle_indices = np.triu_indices(num_problems, k=1)
54
 
@@ -67,7 +70,9 @@ def find_similar_problems(df, similarity_threshold=0.9):
67
 
68
  sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
69
 
70
- status_box.empty()
 
 
71
  st.success(f"βœ… Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="πŸŽ‰")
72
 
73
  return sorted_pairs
 
35
  """Compute sentence embeddings."""
36
  return model.encode(problems, normalize_embeddings=True)
37
 
 
 
38
  def find_similar_problems(df, similarity_threshold=0.9):
39
+ """Find similar problems using cosine similarity, optimized with clear UI updates."""
40
 
41
+ status_msgs = []
42
+
43
+ msg = st.status("πŸ”„ Computing problem embeddings...")
44
+ status_msgs.append(msg)
45
  start_time = time.time()
46
  embeddings = compute_embeddings(df['problem'].tolist())
47
+
48
+ msg = st.status("πŸ”„ Computing cosine similarity matrix...")
49
+ status_msgs.append(msg)
50
  similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
51
 
52
+ msg = st.status("πŸ”„ Filtering similar problems...")
53
+ status_msgs.append(msg)
54
+
55
  num_problems = len(df)
56
  upper_triangle_indices = np.triu_indices(num_problems, k=1)
57
 
 
70
 
71
  sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
72
 
73
+ for msg in status_msgs:
74
+ msg.empty()
75
+
76
  st.success(f"βœ… Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="πŸŽ‰")
77
 
78
  return sorted_pairs