dsleo commited on
Commit
8026d59
Β·
verified Β·
1 Parent(s): f83d20c

cleaning messages

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -36,22 +36,22 @@ def compute_embeddings(problems):
36
  return model.encode(problems, normalize_embeddings=True)
37
 
38
 
 
39
  def find_similar_problems(df, similarity_threshold=0.9):
40
- """Find similar problems using cosine similarity"""
41
 
42
- st.status("πŸ”„ Computing problem embeddings...")
 
43
  start_time = time.time()
44
  embeddings = compute_embeddings(df['problem'].tolist())
45
- st.success("βœ… Embeddings computed!", icon="βœ…")
46
 
47
- st.status("πŸ”„ Computing cosine similarity matrix...")
48
  similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
49
- st.success("βœ… Similarity matrix computed!", icon="βœ…")
50
 
 
51
  num_problems = len(df)
52
  upper_triangle_indices = np.triu_indices(num_problems, k=1)
53
 
54
- st.status("πŸ”„ Filtering similar problems...")
55
  i_indices, j_indices = upper_triangle_indices
56
  similarity_scores = similarity_matrix[i_indices, j_indices]
57
 
@@ -66,7 +66,8 @@ def find_similar_problems(df, similarity_threshold=0.9):
66
  ]
67
 
68
  sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
69
-
 
70
  st.success(f"βœ… Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="πŸŽ‰")
71
 
72
  return sorted_pairs
 
36
  return model.encode(problems, normalize_embeddings=True)
37
 
38
 
39
+
40
  def find_similar_problems(df, similarity_threshold=0.9):
41
+ """Find similar problems using cosine similarity, optimized for speed with clean UI updates."""
42
 
43
+ status_box = st.empty()
44
+ status_box.info("πŸ”„ Computing problem embeddings...")
45
  start_time = time.time()
46
  embeddings = compute_embeddings(df['problem'].tolist())
 
47
 
48
+ status_box.info("πŸ”„ Computing cosine similarity matrix...")
49
  similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
 
50
 
51
+ status_box.info("πŸ”„ Filtering similar problems...")
52
  num_problems = len(df)
53
  upper_triangle_indices = np.triu_indices(num_problems, k=1)
54
 
 
55
  i_indices, j_indices = upper_triangle_indices
56
  similarity_scores = similarity_matrix[i_indices, j_indices]
57
 
 
66
  ]
67
 
68
  sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
69
+
70
+ status_box.empty()
71
  st.success(f"βœ… Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="πŸŽ‰")
72
 
73
  return sorted_pairs