math-dedup / app.py
dsleo's picture
cleaning messages
8026d59 verified
raw
history blame
5.93 kB
import streamlit as st
import pandas as pd
import numpy as np
import json
import os
import time
import zipfile
from sentence_transformers import SentenceTransformer, util
from loguru import logger
# ================== CONFIGURATION ==================
st.set_page_config(page_title="Problem Deduplication Explorer", layout="wide")
# Load a pre-trained model for embeddings
MODEL_NAME = "all-MiniLM-L6-v2"
model = SentenceTransformer(MODEL_NAME)
# Load preloaded dataset
@st.cache_data
def load_data():
file_path = "data/merged_dataset.csv.zip"
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.printdir()
zip_ref.extractall("data/extracted")
df = pd.read_csv("data/extracted/merged_dataset.csv")
return df
df = load_data()
display_columns = ["uuid","problem", "source", "question_type", "problem_type"]
df = df[display_columns]
# ================== FUNCTION DEFINITIONS ==================
def compute_embeddings(problems):
"""Compute sentence embeddings."""
return model.encode(problems, normalize_embeddings=True)
def find_similar_problems(df, similarity_threshold=0.9):
"""Find similar problems using cosine similarity, optimized for speed with clean UI updates."""
status_box = st.empty()
status_box.info("πŸ”„ Computing problem embeddings...")
start_time = time.time()
embeddings = compute_embeddings(df['problem'].tolist())
status_box.info("πŸ”„ Computing cosine similarity matrix...")
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
status_box.info("πŸ”„ Filtering similar problems...")
num_problems = len(df)
upper_triangle_indices = np.triu_indices(num_problems, k=1)
i_indices, j_indices = upper_triangle_indices
similarity_scores = similarity_matrix[i_indices, j_indices]
mask = similarity_scores > similarity_threshold
filtered_i = i_indices[mask]
filtered_j = j_indices[mask]
filtered_scores = similarity_scores[mask]
pairs = [
(df.iloc[i]["uuid"], df.iloc[j]["uuid"], float(score))
for i, j, score in zip(filtered_i, filtered_j, filtered_scores)
]
sorted_pairs = sorted(pairs, key=lambda x: x[2], reverse=True)
status_box.empty()
st.success(f"βœ… Analysis complete! Found {len(sorted_pairs)} similar problems in {time.time() - start_time:.2f}s", icon="πŸŽ‰")
return sorted_pairs
def analyze_clusters(df, similarity_threshold=0.9):
"""Analyze duplicate problem clusters."""
pairs = find_similar_problems(df, similarity_threshold)
detailed_analysis = []
for base_uuid, comp_uuid, score in pairs:
base_row = df[df["uuid"] == base_uuid].iloc[0]
comp_row = df[df["uuid"] == comp_uuid].iloc[0]
column_differences = {}
for col in df.columns:
if col != "uuid":
base_val = base_row[col]
comp_val = comp_row[col]
column_differences[col] = {
'base': base_val,
'comparison': comp_val,
'match': bool(base_val == comp_val)
}
detailed_analysis.append({
'base_uuid': base_uuid,
'comp_uuid': comp_uuid,
'similarity_score': score,
'column_differences': column_differences,
})
return detailed_analysis
# ================== STREAMLIT UI ==================
st.title("πŸ” Problem Deduplication Explorer")
st.sidebar.header("Settings")
similarity_threshold = st.sidebar.slider(
"Similarity Threshold", min_value=0.5, max_value=1.0, value=0.9, step=0.01
)
# Display first 5 rows of dataset
st.subheader("πŸ“„ Explore the Dataset")
st.dataframe(df.head(5))
if st.sidebar.button("Run Deduplication Analysis"):
with st.spinner("Analyzing..."):
results = analyze_clusters(df, similarity_threshold)
st.success("Analysis Complete!")
st.subheader("πŸ“Š Duplicate Problem Pairs")
# Filtering options
sources = df["source"].unique().tolist()
question_types = df["question_type"].unique().tolist()
selected_source = st.sidebar.selectbox("Filter by Source", [None] + sources)
selected_qtype = st.sidebar.selectbox("Filter by Question Type", [None] + question_types)
if selected_source:
results = [r for r in results if df[df["uuid"] == r["base_uuid"]]["source"].values[0] == selected_source]
if selected_qtype:
results = [r for r in results if df[df["uuid"] == r["base_uuid"]]["question_type"].values[0] == selected_qtype]
# Display top 5 initially
num_display = 5
shown_results = results[:num_display]
for entry in shown_results:
base_problem = df[df["uuid"] == entry["base_uuid"]]["problem"].values[0]
similar_problem = df[df["uuid"] == entry["comp_uuid"]]["problem"].values[0]
st.markdown(f"### Problem: {base_problem}")
st.write(f"**Similar to:** {similar_problem}")
st.write(f"**Similarity Score:** {entry['similarity_score']:.4f}")
with st.expander("Show Column Differences"):
st.json(entry["column_differences"])
st.markdown("---")
if len(results) > num_display:
if st.button("Show More Results"):
extra_results = results[num_display:num_display * 2]
for entry in extra_results:
base_problem = df[df["uuid"] == entry["base_uuid"]]["problem"].values[0]
similar_problem = df[df["uuid"] == entry["comp_uuid"]]["problem"].values[0]
st.markdown(f"### Problem: {base_problem}")
st.write(f"**Similar to:** {similar_problem}")
st.write(f"**Similarity Score:** {entry['similarity_score']:.4f}")
with st.expander("Show Column Differences"):
st.json(entry["column_differences"])
st.markdown("---")