File size: 11,412 Bytes
7852d18
2c3b7a4
 
 
08d5d7c
 
 
 
2c3b7a4
 
 
 
 
eb6df80
08d5d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce5c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0b91fe
 
 
 
 
eb6df80
b0b91fe
08d5d7c
 
2c3b7a4
 
08d5d7c
172607a
2c3b7a4
 
 
7852d18
08d5d7c
3cb1c16
 
08d5d7c
 
 
3cb1c16
2c3b7a4
 
 
08d5d7c
5de6905
 
369ecce
5de6905
3cb1c16
5de6905
 
 
 
 
b545f1a
08d5d7c
2c3b7a4
b545f1a
2c3b7a4
de116ae
 
 
 
 
3cb1c16
 
 
 
 
 
 
 
de116ae
d3aa745
3cb1c16
 
d3aa745
de116ae
d3aa745
 
 
 
 
 
 
 
 
 
de116ae
3cb1c16
 
de116ae
b545f1a
de116ae
3cb1c16
de116ae
 
 
 
 
 
 
 
 
 
 
 
a6b4c50
 
de116ae
2d4900f
de116ae
 
d3aa745
 
2d4900f
de116ae
06cf327
d3aa745
de116ae
d3aa745
 
 
0d0b3f9
b0673d8
d3aa745
 
0d0b3f9
d3aa745
 
 
de116ae
02a9646
b0673d8
de116ae
02a9646
de116ae
bc968aa
 
 
 
 
 
 
 
 
 
ccfb9cb
 
 
 
 
 
 
 
bc968aa
 
 
ccfb9cb
3cb1c16
369ecce
b545f1a
5de6905
bc968aa
ccfb9cb
d3aa745
b545f1a
5de6905
2c3b7a4
7db387d
5de6905
 
ccfb9cb
 
 
 
 
 
 
 
 
 
 
5de6905
ccfb9cb
20d5713
45fba10
5de6905
 
ccfb9cb
5de6905
 
b545f1a
5de6905
 
 
 
369ecce
20d5713
45fba10
29a1596
08d5d7c
de116ae
 
b545f1a
ccfb9cb
45fba10
b545f1a
 
 
 
 
ccfb9cb
45fba10
b545f1a
 
 
 
 
ccfb9cb
45fba10
de116ae
 
08d5d7c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from PIL import Image
import numpy as np
import matplotlib.cm as cm
import msgspec
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
import timm
from timm.models import VisionTransformer
import safetensors.torch
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download

class Fit(torch.nn.Module):
    def __init__(
        self,
        bounds: tuple[int, int] | int,
        interpolation = InterpolationMode.LANCZOS,
        grow: bool = True,
        pad: float | None = None
    ):
        super().__init__()

        self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
        self.interpolation = interpolation
        self.grow = grow
        self.pad = pad

    def forward(self, img: Image) -> Image:
        wimg, himg = img.size
        hbound, wbound = self.bounds

        hscale = hbound / himg
        wscale = wbound / wimg

        if not self.grow:
            hscale = min(hscale, 1.0)
            wscale = min(wscale, 1.0)

        scale = min(hscale, wscale)
        if scale == 1.0:
            return img

        hnew = min(round(himg * scale), hbound)
        wnew = min(round(wimg * scale), wbound)

        img = TF.resize(img, (hnew, wnew), self.interpolation)

        if self.pad is None:
            return img

        hpad = hbound - hnew
        wpad = wbound - wnew

        tpad = hpad // 2
        bpad = hpad - tpad

        lpad = wpad // 2
        rpad = wpad - lpad

        return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"bounds={self.bounds}, " +
            f"interpolation={self.interpolation.value}, " +
            f"grow={self.grow}, " +
            f"pad={self.pad})"
        )

class CompositeAlpha(torch.nn.Module):
    def __init__(
        self,
        background: tuple[float, float, float] | float,
    ):
        super().__init__()

        self.background = (background, background, background) if isinstance(background, float) else background
        self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)

    def forward(self, img: torch.Tensor) -> torch.Tensor:
        if img.shape[-3] == 3:
            return img

        alpha = img[..., 3, None, :, :]

        img[..., :3, :, :] *= alpha

        background = self.background.expand(-1, img.shape[-2], img.shape[-1])
        if background.ndim == 1:
            background = background[:, None, None]
        elif background.ndim == 2:
            background = background[None, :, :]

        img[..., :3, :, :] += (1.0 - alpha) * background
        return img[..., :3, :, :]

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"background={self.background})"
        )

transform = transforms.Compose([
    Fit((384, 384)),
    transforms.ToTensor(),
    CompositeAlpha(0.5),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
    transforms.CenterCrop((384, 384)),
])

model = timm.create_model(
    "vit_so400m_patch14_siglip_384.webli",
    pretrained=False,
    num_classes=9083,
) # type: VisionTransformer

class GatedHead(torch.nn.Module):
    def __init__(self,
        num_features: int,
        num_classes: int
    ):
        super().__init__()
        self.num_classes = num_classes
        self.linear = torch.nn.Linear(num_features, num_classes * 2)

        self.act = torch.nn.Sigmoid()
        self.gate = torch.nn.Sigmoid()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear(x)
        x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
        return x

model.head = GatedHead(min(model.head.weight.shape), 9083)

cached_model = hf_hub_download(
    repo_id="RedRocket/JointTaggerProject",
    subfolder="JTP_PILOT2",
    filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors"
)

safetensors.torch.load_model(model, cached_model)
model.eval()

with open("tagger_tags.json", "rb") as file:
    tags = msgspec.json.decode(file.read(), type=dict[str, int])

for tag in list(tags.keys()):
    tags[tag.replace("_", " ")] = tags.pop(tag)

allowed_tags = list(tags.keys())

@spaces.GPU(duration=5)
def run_classifier(image: Image.Image, threshold):
    img = image.convert('RGBA')
    tensor = transform(img).unsqueeze(0)

    with torch.no_grad():
        probits = model(tensor)[0] # type: torch.Tensor
        values, indices = probits.cpu().topk(250)

    tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)}

    sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))

    return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score

def create_tags(threshold, sorted_tag_score: dict):
    filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
    text_no_impl = ", ".join(filtered_tag_score.keys())
    return text_no_impl, filtered_tag_score

def clear_image():
    return "", {}, None, {}, None

@spaces.GPU(duration=5)
def cam_inference(img, threshold, alpha, evt: gr.SelectData):
    target_tag_index = tags[evt.value]
    tensor = transform(img).unsqueeze(0)

    gradients = {}
    activations = {}

    def hook_forward(module, input, output):
        activations['value'] = output

    def hook_backward(module, grad_in, grad_out):
        gradients['value'] = grad_out[0]

    handle_forward = model.norm.register_forward_hook(hook_forward)
    handle_backward = model.norm.register_full_backward_hook(hook_backward)

    probits = model(tensor)[0]
 
    model.zero_grad()
    probits[target_tag_index].backward(retain_graph=True)

    with torch.no_grad():
        patch_grads = gradients.get('value')
        patch_acts = activations.get('value')
    
        weights = torch.mean(patch_grads, dim=1).squeeze(0)
    
        cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights)
        cam_1d = torch.relu(cam_1d)
    
        cam = cam_1d.reshape(27, 27).detach().cpu().numpy()

    handle_forward.remove()
    handle_backward.remove()

    return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam

def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2):
    """
    Overlays CAM on image and returns a PIL image.

    Args:
        image_pil: PIL Image (RGB)
        cam: 2D numpy array (activation map)
        alpha: float, blending factor
        vis_threshold: float, minimum normalized CAM value to show color

    Returns:
        PIL.Image.Image with overlay
    """
    if cam is None:
        return image_pil
    w, h = image_pil.size
    size = max(w, h)

    # Normalize CAM to [0, 1]
    cam -= cam.min()
    cam /= cam.max()

    # Create heatmap using matplotlib colormap
    colormap = cm.get_cmap('inferno')
    cam_rgb = colormap(cam)[:, :, :3]  # RGB

    # Create alpha channel
    cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha  # Alpha mask
    cam_rgba = np.dstack((cam_rgb, cam_alpha))  # Shape: (H, W, 4)
    
    # Coarse upscale for CAM output -- keeps "blocky" effect that is truer to what is measured
    cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA")
    cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST)

    # Model uses padded image as input, this matches attention map to input image aspect ratio
    cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC)
    cam_pil = transforms.CenterCrop((h, w))(cam_pil)

    # Composite over original
    composite = Image.alpha_composite(image_pil, cam_pil)

    return composite

custom_css = """
.output-class { display: none; }
.inferno-slider input[type=range] {
    background: linear-gradient(to right,
        #000004, #1b0c41, #4a0c6b, #781c6d,
        #a52c60, #cf4446, #ed6925, #fb9b06,
        #f7d13d, #fcffa4
    ) !important;
    background-size: 100% 100% !important;
}
#image_container-image {
    width: 100%;
    aspect-ratio: 1 / 1;
    max-height: 100%;
}
#image_container img {
    object-fit: contain !important;
}
"""

with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("## Joint Tagger Project: JTP-PILOT² Demo **BETA**")
    original_image_state = gr.State() # stash a copy of the input image
    sorted_tag_score_state = gr.State(value={}) # stash a copy of the input image
    cam_state = gr.State()
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container")
            cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider")
            alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha")
        with gr.Column():
            threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold")
            tag_string = gr.Textbox(label="Tag String")
            label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)

    gr.Markdown("""
    This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results).  A threshold of 0.2 is recommended.  Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.

    This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.

    Thanks to metal63 for providing initial code for attention visualization (click a tag in the tag list to try it out!)

    Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
    """)

    image.upload(
        fn=run_classifier,
        inputs=[image, threshold_slider],
        outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state],
        show_progress='minimal'
    )

    image.clear(
        fn=clear_image,
        inputs=[],
        outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state]
    )

    threshold_slider.input(
        fn=create_tags,
        inputs=[threshold_slider, sorted_tag_score_state],
        outputs=[tag_string, label_box],
        show_progress='hidden'
    )

    label_box.select(
        fn=cam_inference,
        inputs=[original_image_state, cam_slider, alpha_slider],
        outputs=[image, cam_state],
        show_progress='minimal'
    )

    cam_slider.input(
        fn=create_cam_visualization_pil,
        inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
        outputs=[image],
        show_progress='hidden'
    )

    alpha_slider.input(
        fn=create_cam_visualization_pil,
        inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
        outputs=[image],
        show_progress='hidden'
    )

if __name__ == "__main__":
    demo.launch()