fix leaky globals
Browse files
app.py
CHANGED
@@ -154,19 +154,15 @@ allowed_tags = list(tags.keys())
|
|
154 |
for idx, tag in enumerate(allowed_tags):
|
155 |
allowed_tags[idx] = tag.replace("_", " ")
|
156 |
|
157 |
-
sorted_tag_score = {}
|
158 |
-
input_image = None
|
159 |
|
160 |
|
161 |
@spaces.GPU(duration=5)
|
162 |
-
def run_classifier(image, threshold):
|
163 |
-
|
164 |
-
input_image = image.convert('RGBA')
|
165 |
-
img = input_image
|
166 |
tensor = transform(img).unsqueeze(0)
|
167 |
|
168 |
with torch.no_grad():
|
169 |
-
probits = model(tensor)[0]
|
170 |
values, indices = probits.topk(250)
|
171 |
|
172 |
tag_score = dict()
|
@@ -174,37 +170,18 @@ def run_classifier(image, threshold):
|
|
174 |
tag_score[allowed_tags[indices[i]]] = values[i].item()
|
175 |
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))
|
176 |
|
177 |
-
return create_tags(threshold)
|
178 |
|
179 |
-
def create_tags(threshold):
|
180 |
-
global sorted_tag_score
|
181 |
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
|
182 |
text_no_impl = ", ".join(filtered_tag_score.keys())
|
183 |
return text_no_impl, filtered_tag_score
|
184 |
|
185 |
def clear_image():
|
186 |
-
|
187 |
-
input_image = None
|
188 |
-
sorted_tag_score = {}
|
189 |
-
return "", {}
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
# Store hooks and intermediate values
|
194 |
-
gradients = {}
|
195 |
-
activations = {}
|
196 |
-
|
197 |
-
def hook_forward(module, input, output):
|
198 |
-
activations['value'] = output
|
199 |
-
|
200 |
-
def hook_backward(module, grad_in, grad_out):
|
201 |
-
gradients['value'] = grad_out[0]
|
202 |
-
|
203 |
-
def cam_inference(threshold, evt: gr.SelectData):
|
204 |
target_tag = evt.value
|
205 |
-
print(f"target_tag: {target_tag}")
|
206 |
-
global input_image, sorted_tag_score, target_tag_index, gradients, activations
|
207 |
-
img = input_image
|
208 |
tensor = transform(img).unsqueeze(0)
|
209 |
|
210 |
gradients = {}
|
@@ -212,46 +189,44 @@ def cam_inference(threshold, evt: gr.SelectData):
|
|
212 |
cam = None
|
213 |
target_tag_index = None
|
214 |
|
215 |
-
if target_tag:
|
216 |
-
if target_tag not in allowed_tags:
|
217 |
-
print(f"Warning: Target tag '{target_tag}' not found in allowed tags.")
|
218 |
-
target_tag = None
|
219 |
-
else:
|
220 |
-
target_tag_index = allowed_tags.index(target_tag)
|
221 |
-
handle_forward = model.norm.register_forward_hook(hook_forward)
|
222 |
-
handle_backward = model.norm.register_full_backward_hook(hook_backward)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
patch_acts = acts
|
238 |
|
239 |
-
|
|
|
240 |
|
241 |
-
|
242 |
-
cam_1d = torch.relu(cam_1d)
|
243 |
|
244 |
-
|
|
|
245 |
|
|
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
return create_cam_visualization_pil(cam, vis_threshold=threshold)
|
253 |
|
254 |
-
def create_cam_visualization_pil(cam, alpha=0.6, vis_threshold=0.2):
|
255 |
"""
|
256 |
Overlays CAM on image and returns a PIL image.
|
257 |
|
@@ -265,9 +240,6 @@ def create_cam_visualization_pil(cam, alpha=0.6, vis_threshold=0.2):
|
|
265 |
PIL.Image.Image with overlay
|
266 |
"""
|
267 |
|
268 |
-
global input_image
|
269 |
-
# Convert to RGB (in case RGBA or others)
|
270 |
-
image_pil = input_image
|
271 |
w, h = image_pil.size
|
272 |
|
273 |
# Resize CAM to match image
|
@@ -297,8 +269,11 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
297 |
|
298 |
This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.
|
299 |
|
|
|
|
|
300 |
Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
301 |
""")
|
|
|
302 |
with gr.Row():
|
303 |
with gr.Column():
|
304 |
image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False)
|
@@ -310,13 +285,13 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
310 |
image_input.upload(
|
311 |
fn=run_classifier,
|
312 |
inputs=[image_input, threshold_slider],
|
313 |
-
outputs=[tag_string, label_box]
|
314 |
)
|
315 |
|
316 |
image_input.clear(
|
317 |
fn=clear_image,
|
318 |
inputs=[],
|
319 |
-
outputs=[tag_string, label_box]
|
320 |
)
|
321 |
|
322 |
threshold_slider.input(
|
@@ -327,7 +302,7 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
327 |
|
328 |
label_box.select(
|
329 |
fn=cam_inference,
|
330 |
-
inputs=[threshold_slider],
|
331 |
outputs=[image_input]
|
332 |
)
|
333 |
|
|
|
154 |
for idx, tag in enumerate(allowed_tags):
|
155 |
allowed_tags[idx] = tag.replace("_", " ")
|
156 |
|
|
|
|
|
157 |
|
158 |
|
159 |
@spaces.GPU(duration=5)
|
160 |
+
def run_classifier(image: Image.Image, threshold):
|
161 |
+
img = image.convert('RGBA')
|
|
|
|
|
162 |
tensor = transform(img).unsqueeze(0)
|
163 |
|
164 |
with torch.no_grad():
|
165 |
+
probits = model(tensor)[0] # type: torch.Tensor
|
166 |
values, indices = probits.topk(250)
|
167 |
|
168 |
tag_score = dict()
|
|
|
170 |
tag_score[allowed_tags[indices[i]]] = values[i].item()
|
171 |
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))
|
172 |
|
173 |
+
return *create_tags(threshold, sorted_tag_score), img
|
174 |
|
175 |
+
def create_tags(threshold, sorted_tag_score: dict):
|
|
|
176 |
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
|
177 |
text_no_impl = ", ".join(filtered_tag_score.keys())
|
178 |
return text_no_impl, filtered_tag_score
|
179 |
|
180 |
def clear_image():
|
181 |
+
return "", {}, None
|
|
|
|
|
|
|
182 |
|
183 |
+
def cam_inference(img, threshold, evt: gr.SelectData):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
target_tag = evt.value
|
|
|
|
|
|
|
185 |
tensor = transform(img).unsqueeze(0)
|
186 |
|
187 |
gradients = {}
|
|
|
189 |
cam = None
|
190 |
target_tag_index = None
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
def hook_forward(module, input, output):
|
194 |
+
activations['value'] = output
|
195 |
+
|
196 |
+
def hook_backward(module, grad_in, grad_out):
|
197 |
+
gradients['value'] = grad_out[0]
|
198 |
+
|
199 |
+
target_tag_index = allowed_tags.index(target_tag)
|
200 |
+
handle_forward = model.norm.register_forward_hook(hook_forward)
|
201 |
+
handle_backward = model.norm.register_full_backward_hook(hook_backward)
|
202 |
|
203 |
+
probits = model(tensor)[0].cpu()
|
204 |
+
|
205 |
+
model.zero_grad()
|
206 |
+
target_score = probits[target_tag_index]
|
207 |
+
target_score.backward(retain_graph=True)
|
208 |
|
209 |
+
grads = gradients.get('value')
|
210 |
+
acts = activations.get('value')
|
|
|
211 |
|
212 |
+
patch_grads = grads
|
213 |
+
patch_acts = acts
|
214 |
|
215 |
+
weights = torch.mean(patch_grads, dim=1).squeeze(0)
|
|
|
216 |
|
217 |
+
cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights)
|
218 |
+
cam_1d = torch.relu(cam_1d)
|
219 |
|
220 |
+
cam = cam_1d.reshape(27, 27).detach().cpu().numpy()
|
221 |
|
222 |
+
handle_forward.remove()
|
223 |
+
handle_backward.remove()
|
224 |
+
gradients = {}
|
225 |
+
activations = {}
|
226 |
|
227 |
+
return create_cam_visualization_pil(img, cam, vis_threshold=threshold)
|
228 |
|
229 |
+
def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2):
|
230 |
"""
|
231 |
Overlays CAM on image and returns a PIL image.
|
232 |
|
|
|
240 |
PIL.Image.Image with overlay
|
241 |
"""
|
242 |
|
|
|
|
|
|
|
243 |
w, h = image_pil.size
|
244 |
|
245 |
# Resize CAM to match image
|
|
|
269 |
|
270 |
This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.
|
271 |
|
272 |
+
Thanks to metal63 for providing initial code for attention visualization (click a tag in the tag list to try it out!)
|
273 |
+
|
274 |
Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
275 |
""")
|
276 |
+
original_image_state = gr.State() # stash a copy of the input image
|
277 |
with gr.Row():
|
278 |
with gr.Column():
|
279 |
image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False)
|
|
|
285 |
image_input.upload(
|
286 |
fn=run_classifier,
|
287 |
inputs=[image_input, threshold_slider],
|
288 |
+
outputs=[tag_string, label_box, original_image_state]
|
289 |
)
|
290 |
|
291 |
image_input.clear(
|
292 |
fn=clear_image,
|
293 |
inputs=[],
|
294 |
+
outputs=[tag_string, label_box, original_image_state]
|
295 |
)
|
296 |
|
297 |
threshold_slider.input(
|
|
|
302 |
|
303 |
label_box.select(
|
304 |
fn=cam_inference,
|
305 |
+
inputs=[original_image_state, threshold_slider],
|
306 |
outputs=[image_input]
|
307 |
)
|
308 |
|