File size: 2,730 Bytes
96dc011
 
 
 
 
 
31c247f
 
 
 
 
 
96dc011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d6287
 
 
 
 
96dc011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c247f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import argparse
import silentcipher
import torch
import torchaudio

# Set a default watermark key if environment variable is not set
watermark_key_str = os.getenv("WATERMARK_KEY")
if watermark_key_str is None:
    CSM_1B_HF_WATERMARK = [0, 0, 0, 0]  # Default placeholder
else:
    CSM_1B_HF_WATERMARK = list(map(int, watermark_key_str.split(" ")))

def cli_check_audio() -> None:
    parser = argparse.ArgumentParser()
    parser.add_argument("--audio_path", type=str, required=True)
    args = parser.parse_args()
    check_audio_from_file(args.audio_path)

def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
    model = silentcipher.get_model(
        model_type="44.1k",
        device=device,
    )
    return model

@torch.inference_mode()
def watermark(
    watermarker: silentcipher.server.Model,
    audio_array: torch.Tensor,
    sample_rate: int,
    watermark_key: list[int],
) -> tuple[torch.Tensor, int]:
    audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
    
    # Fix the syntax error by properly unpacking the return values
    result = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
    encoded = result[0]  # Assuming the first element is the encoded audio
    
    output_sample_rate = min(44100, sample_rate)
    encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
    return encoded, output_sample_rate

@torch.inference_mode()
def verify(
    watermarker: silentcipher.server.Model,
    watermarked_audio: torch.Tensor,
    sample_rate: int,
    watermark_key: list[int],
) -> bool:
    watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
    result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
    is_watermarked = result["status"]
    if is_watermarked:
        is_csm_watermarked = result["messages"][0] == watermark_key
    else:
        is_csm_watermarked = False
    return is_watermarked and is_csm_watermarked

def check_audio_from_file(audio_path: str) -> None:
    watermarker = load_watermarker(device="cuda")
    audio_array, sample_rate = load_audio(audio_path)
    is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_HF_WATERMARK)
    outcome = "Watermarked" if is_watermarked else "Not watermarked"
    print(f"{outcome}: {audio_path}")

def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
    audio_array, sample_rate = torchaudio.load(audio_path)
    audio_array = audio_array.mean(dim=0)
    return audio_array, int(sample_rate)

if __name__ == "__main__":
    cli_check_audio()