Spaces:
Running
Running
Update watermarking.py
Browse files- watermarking.py +8 -17
watermarking.py
CHANGED
@@ -1,21 +1,22 @@
|
|
1 |
import os
|
2 |
import argparse
|
3 |
-
|
4 |
import silentcipher
|
5 |
import torch
|
6 |
import torchaudio
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def cli_check_audio() -> None:
|
12 |
parser = argparse.ArgumentParser()
|
13 |
parser.add_argument("--audio_path", type=str, required=True)
|
14 |
args = parser.parse_args()
|
15 |
-
|
16 |
check_audio_from_file(args.audio_path)
|
17 |
|
18 |
-
|
19 |
def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
|
20 |
model = silentcipher.get_model(
|
21 |
model_type="44.1k",
|
@@ -23,7 +24,6 @@ def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
|
|
23 |
)
|
24 |
return model
|
25 |
|
26 |
-
|
27 |
@torch.inference_mode()
|
28 |
def watermark(
|
29 |
watermarker: silentcipher.server.Model,
|
@@ -32,13 +32,11 @@ def watermark(
|
|
32 |
watermark_key: list[int],
|
33 |
) -> tuple[torch.Tensor, int]:
|
34 |
audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
|
35 |
-
encoded,
|
36 |
-
|
37 |
output_sample_rate = min(44100, sample_rate)
|
38 |
encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
|
39 |
return encoded, output_sample_rate
|
40 |
|
41 |
-
|
42 |
@torch.inference_mode()
|
43 |
def verify(
|
44 |
watermarker: silentcipher.server.Model,
|
@@ -48,31 +46,24 @@ def verify(
|
|
48 |
) -> bool:
|
49 |
watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
|
50 |
result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
|
51 |
-
|
52 |
is_watermarked = result["status"]
|
53 |
if is_watermarked:
|
54 |
is_csm_watermarked = result["messages"][0] == watermark_key
|
55 |
else:
|
56 |
is_csm_watermarked = False
|
57 |
-
|
58 |
return is_watermarked and is_csm_watermarked
|
59 |
|
60 |
-
|
61 |
def check_audio_from_file(audio_path: str) -> None:
|
62 |
watermarker = load_watermarker(device="cuda")
|
63 |
-
|
64 |
audio_array, sample_rate = load_audio(audio_path)
|
65 |
is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_HF_WATERMARK)
|
66 |
-
|
67 |
outcome = "Watermarked" if is_watermarked else "Not watermarked"
|
68 |
print(f"{outcome}: {audio_path}")
|
69 |
|
70 |
-
|
71 |
def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
|
72 |
audio_array, sample_rate = torchaudio.load(audio_path)
|
73 |
audio_array = audio_array.mean(dim=0)
|
74 |
return audio_array, int(sample_rate)
|
75 |
|
76 |
-
|
77 |
if __name__ == "__main__":
|
78 |
-
cli_check_audio()
|
|
|
1 |
import os
|
2 |
import argparse
|
|
|
3 |
import silentcipher
|
4 |
import torch
|
5 |
import torchaudio
|
6 |
|
7 |
+
# Set a default watermark key if environment variable is not set
|
8 |
+
watermark_key_str = os.getenv("WATERMARK_KEY")
|
9 |
+
if watermark_key_str is None:
|
10 |
+
CSM_1B_HF_WATERMARK = [0, 0, 0, 0] # Default placeholder
|
11 |
+
else:
|
12 |
+
CSM_1B_HF_WATERMARK = list(map(int, watermark_key_str.split(" ")))
|
13 |
|
14 |
def cli_check_audio() -> None:
|
15 |
parser = argparse.ArgumentParser()
|
16 |
parser.add_argument("--audio_path", type=str, required=True)
|
17 |
args = parser.parse_args()
|
|
|
18 |
check_audio_from_file(args.audio_path)
|
19 |
|
|
|
20 |
def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
|
21 |
model = silentcipher.get_model(
|
22 |
model_type="44.1k",
|
|
|
24 |
)
|
25 |
return model
|
26 |
|
|
|
27 |
@torch.inference_mode()
|
28 |
def watermark(
|
29 |
watermarker: silentcipher.server.Model,
|
|
|
32 |
watermark_key: list[int],
|
33 |
) -> tuple[torch.Tensor, int]:
|
34 |
audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
|
35 |
+
encoded, * = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
|
|
|
36 |
output_sample_rate = min(44100, sample_rate)
|
37 |
encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
|
38 |
return encoded, output_sample_rate
|
39 |
|
|
|
40 |
@torch.inference_mode()
|
41 |
def verify(
|
42 |
watermarker: silentcipher.server.Model,
|
|
|
46 |
) -> bool:
|
47 |
watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
|
48 |
result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
|
|
|
49 |
is_watermarked = result["status"]
|
50 |
if is_watermarked:
|
51 |
is_csm_watermarked = result["messages"][0] == watermark_key
|
52 |
else:
|
53 |
is_csm_watermarked = False
|
|
|
54 |
return is_watermarked and is_csm_watermarked
|
55 |
|
|
|
56 |
def check_audio_from_file(audio_path: str) -> None:
|
57 |
watermarker = load_watermarker(device="cuda")
|
|
|
58 |
audio_array, sample_rate = load_audio(audio_path)
|
59 |
is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_HF_WATERMARK)
|
|
|
60 |
outcome = "Watermarked" if is_watermarked else "Not watermarked"
|
61 |
print(f"{outcome}: {audio_path}")
|
62 |
|
|
|
63 |
def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
|
64 |
audio_array, sample_rate = torchaudio.load(audio_path)
|
65 |
audio_array = audio_array.mean(dim=0)
|
66 |
return audio_array, int(sample_rate)
|
67 |
|
|
|
68 |
if __name__ == "__main__":
|
69 |
+
cli_check_audio()
|