|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
import asyncio |
|
from llama_index.core.agent.workflow import AgentWorkflow |
|
from agents.llama_index_agent import ( |
|
GaiaAgent, |
|
create_writer_agent, |
|
create_review_agent |
|
) |
|
import json |
|
import hashlib |
|
from pathlib import Path |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
CLAUDE = { |
|
"model_provider": "anthropic", |
|
"model_name": "claude-3-7-sonnet-latest" |
|
} |
|
OPENAI = { |
|
"model_provider": "openai", |
|
"model_name": "gpt-4o" |
|
} |
|
class BasicAgent: |
|
def __init__( |
|
self, |
|
model_provider="openai", |
|
model_name="o4-mini", |
|
api_key=None, |
|
use_separate_writer_model=True, |
|
writer_model_provider="openai", |
|
writer_model_name="gpt-4o-mini", |
|
use_separate_review_model=True, |
|
review_model_provider="openai", |
|
review_model_name="gpt-4o-mini" |
|
): |
|
""" |
|
Initialize the BasicAgent with a three-agent workflow. |
|
|
|
Args: |
|
model_provider: LLM provider for main agent |
|
model_name: Model name for main agent |
|
api_key: API key for main agent |
|
use_separate_writer_model: Whether to use a different model for the writer agent |
|
writer_model_provider: LLM provider for writer agent (if separate) |
|
writer_model_name: Model name for writer agent (if separate) |
|
use_separate_review_model: Whether to use a different model for the review agent |
|
review_model_provider: LLM provider for review agent (if separate) |
|
review_model_name: Model name for review agent (if separate) |
|
""" |
|
|
|
main_model_config = { |
|
"model_provider": model_provider, |
|
"model_name": model_name, |
|
"api_key": api_key |
|
} |
|
|
|
|
|
if use_separate_writer_model: |
|
writer_model_config = { |
|
"model_provider": writer_model_provider, |
|
"model_name": writer_model_name, |
|
"api_key": api_key |
|
} |
|
else: |
|
writer_model_config = main_model_config |
|
|
|
|
|
if use_separate_review_model: |
|
review_model_config = { |
|
"model_provider": review_model_provider, |
|
"model_name": review_model_name, |
|
"api_key": api_key |
|
} |
|
else: |
|
review_model_config = main_model_config |
|
|
|
|
|
self.main_agent = GaiaAgent(**main_model_config) |
|
self.writer_agent = create_writer_agent(writer_model_config) |
|
self.review_agent = create_review_agent(review_model_config) |
|
|
|
|
|
self.main_agent.can_handoff_to = ["writer_agent", "review_agent"] |
|
|
|
|
|
self.agent_workflow = AgentWorkflow( |
|
agents=[self.main_agent, self.writer_agent, self.review_agent], |
|
root_agent=self.main_agent.name, |
|
initial_state={ |
|
"original_question": "", |
|
"task_id": "", |
|
"audio_file_path": "", |
|
"analysis_notes": "", |
|
"format_requirements": "", |
|
"next_agent": "", |
|
"formatted_answer": "", |
|
"final_answer": "" |
|
} |
|
) |
|
|
|
print(f"BasicAgent initialized with main agent: {model_provider} {model_name}") |
|
if use_separate_writer_model: |
|
print(f"Writer agent using: {writer_model_provider} {writer_model_name}") |
|
else: |
|
print(f"Writer agent using same model as main agent") |
|
if use_separate_review_model: |
|
print(f"Review agent using: {review_model_provider} {review_model_name}") |
|
else: |
|
print(f"Review agent using same model as main agent") |
|
|
|
def __call__(self, question_data: dict) -> str: |
|
"""Process a GAIA benchmark question and return the formatted answer.""" |
|
|
|
question_text = question_data.get("question", "") |
|
task_id = question_data.get("task_id", "") |
|
file_name = question_data.get("file_name", "") |
|
|
|
print(f"Agent received question (first 50 chars): {question_text[:50]}...") |
|
|
|
|
|
local_file_path = None |
|
if file_name and task_id: |
|
try: |
|
local_file_path = self.download_task_file(question_data) |
|
print(f"Downloaded file to {local_file_path}") |
|
except Exception as e: |
|
print(f"Error downloading file: {e}") |
|
|
|
async def agentic_main(): |
|
|
|
initial_state = { |
|
"original_question": question_text, |
|
"task_id": task_id, |
|
"audio_file_path": local_file_path, |
|
"analysis_notes": "", |
|
"format_requirements": "", |
|
"next_agent": "", |
|
"final_answer": "", |
|
"workflow_state": "initial_analysis", |
|
"require_handoff": True, |
|
} |
|
|
|
|
|
enhanced_input = f""" |
|
WORKFLOW INSTRUCTIONS: |
|
1. You (jefe) MUST analyze this question and find the answer |
|
2. After analysis, you MUST use the handoff tool to delegate to writer_agent |
|
3. NEVER provide a direct answer - always delegate using the handoff tool |
|
|
|
Task ID: {task_id} |
|
Question: {question_text} |
|
""" |
|
|
|
|
|
if local_file_path: |
|
enhanced_input += f"\nFile Path: {local_file_path}\n\nPlease analyze this question. If it involves an audio file, use the transcribe_audio tool with the provided path." |
|
|
|
|
|
print("Starting workflow execution...") |
|
try: |
|
workflow_response = await self.agent_workflow.run( |
|
enhanced_input, |
|
initial_state=initial_state |
|
) |
|
|
|
|
|
if hasattr(workflow_response.response, 'blocks') and workflow_response.response.blocks: |
|
final_answer = workflow_response.response.blocks[-1].text |
|
print(f"Workflow completed. Final answer extracted: {final_answer}") |
|
return final_answer |
|
else: |
|
print("Warning: Could not extract final answer from workflow response blocks") |
|
|
|
final_answer = str(workflow_response.response) |
|
return final_answer |
|
|
|
except Exception as e: |
|
print(f"Error in workflow execution: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return f"Error: {str(e)}" |
|
|
|
response = asyncio.run(agentic_main()) |
|
|
|
|
|
final_answer = response.response.blocks[-1].text if hasattr(response, 'response') and hasattr(response.response, 'blocks') else str(response) |
|
if isinstance(final_answer, str) and final_answer.startswith("Answer:"): |
|
final_answer = final_answer.replace("Answer:", "").strip() |
|
|
|
print(f"Agent returning final answer: {final_answer}") |
|
return final_answer |
|
|
|
def download_task_file(self, question_data: dict) -> str: |
|
"""Download a task file from the API and return the local file path.""" |
|
api_url = DEFAULT_API_URL |
|
file_url = f"{api_url}/files/{question_data['task_id']}" |
|
|
|
print(f"Downloading file from: {file_url}") |
|
|
|
try: |
|
response = requests.get(file_url, stream=True) |
|
response.raise_for_status() |
|
|
|
|
|
downloads_dir = Path("downloads") |
|
downloads_dir.mkdir(exist_ok=True) |
|
|
|
|
|
file_path = downloads_dir / f"{question_data['file_name']}" |
|
with open(file_path, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
|
|
return str(file_path) |
|
except Exception as e: |
|
print(f"Error downloading file: {e}") |
|
raise |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
|
|
submitted_answer = agent(item) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|