docker_test / app.py
朱东升
update37
254fe03
raw
history blame
25.1 kB
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
import redis
import pickle
from src.containerized_eval import eval_string_script
# Add current directory and src directory to module search path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
sys.path.append(current_dir)
if src_dir not in sys.path:
sys.path.append(src_dir)
# Initialize Redis connection (will use environment variables in Hugging Face Space)
REDIS_URL = os.environ.get('REDIS_URL', 'redis://localhost:6379/0')
redis_client = redis.from_url(REDIS_URL)
# Keys for Redis
QUEUE_KEY = 'eval_task_queue'
STATUS_KEY = 'eval_task_status'
HISTORY_KEY = 'eval_task_history'
TASK_TIMES_KEY = 'eval_task_times'
# Local queue for worker threads
local_task_queue = queue.Queue()
# Lock for shared resources
lock = threading.Lock()
# Number of worker threads
worker_threads = max(1, multiprocessing.cpu_count() // 2) # Using half the available cores for better stability
# Flag for running background threads
running = True
def redis_queue_monitor():
"""Monitor Redis queue and add tasks to local queue"""
last_check = 0
while running:
try:
# Check Redis queue every second
if time.time() - last_check >= 1:
last_check = time.time()
# Get all tasks in the queue
task_list = redis_client.lrange(QUEUE_KEY, 0, -1)
for task_data in task_list:
task = pickle.loads(task_data)
task_id = task['id']
# Check if task is already in processing
status_data = redis_client.hget(STATUS_KEY, task_id)
if status_data:
status = pickle.loads(status_data)
if status['status'] == 'queued':
# Add to local queue if not already processing
local_task_queue.put((task_id, task['input_data'], task['request_time']))
# Update status to processing
with lock:
status['status'] = 'processing'
status['start_time'] = time.time()
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(status))
# Remove from Redis queue
redis_client.lrem(QUEUE_KEY, 1, task_data)
time.sleep(0.1)
except Exception as e:
print(f"Redis queue monitor error: {e}")
time.sleep(1)
def queue_processor():
"""Process tasks in the local queue"""
while running:
try:
task_id, input_data, request_time = local_task_queue.get(timeout=0.1)
# Get current status
status_data = redis_client.hget(STATUS_KEY, task_id)
if status_data:
task_status = pickle.loads(status_data)
else:
task_status = {
'status': 'processing',
'queued_time': request_time,
'start_time': time.time()
}
# Update status
task_status['status'] = 'processing'
task_status['start_time'] = time.time()
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
estimated_factors = {
'language': language,
'size': task_size,
'complexity': task_complexity
}
task_status['estimated_factors'] = estimated_factors
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
result = evaluate(input_data)
end_time = time.time()
process_time = end_time - task_status['start_time']
# Update status
task_status['status'] = 'completed'
task_status['result'] = result
task_status['end_time'] = end_time
task_status['process_time'] = process_time
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
# Update task type times
if 'estimated_factors' in task_status:
factors = task_status['estimated_factors']
key = f"{factors['language']}_{factors['complexity']}"
# Update task times in Redis
times_data = redis_client.hget(TASK_TIMES_KEY, key)
if times_data:
times = pickle.loads(times_data)
else:
times = []
times.append(process_time / factors['size'])
if len(times) > 10:
times = times[-10:]
redis_client.hset(TASK_TIMES_KEY, key, pickle.dumps(times))
# Add to history
history_item = {
'task_id': task_id,
'request_time': request_time,
'process_time': process_time,
'status': 'completed',
'factors': task_status.get('estimated_factors', {})
}
# Get current history
history_data = redis_client.get(HISTORY_KEY)
if history_data:
history = pickle.loads(history_data)
else:
history = []
history.append(history_item)
while len(history) > 200:
history.pop(0)
redis_client.set(HISTORY_KEY, pickle.dumps(history))
local_task_queue.task_done()
except queue.Empty:
continue
except Exception as e:
if 'task_id' in locals():
status_data = redis_client.hget(STATUS_KEY, task_id)
if status_data:
task_status = pickle.loads(status_data)
else:
task_status = {}
task_status['status'] = 'error'
task_status['error'] = str(e)
task_status['end_time'] = time.time()
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
local_task_queue.task_done()
def _estimate_task_complexity(tasks):
"""Estimate task complexity
Returns: 'simple', 'medium', or 'complex'
"""
total_code_length = 0
count = 0
for task in tasks:
if isinstance(task, dict):
prompt = task.get('prompt', '')
tests = task.get('tests', '')
completions = task.get('processed_completions', [])
code_length = len(prompt) + len(tests)
if completions:
code_length += sum(len(comp) for comp in completions)
total_code_length += code_length
count += 1
if count == 0:
return 'medium'
avg_length = total_code_length / count
if avg_length < 1000:
return 'simple'
elif avg_length < 5000:
return 'medium'
else:
return 'complex'
def evaluate(input_data):
"""Main function for code evaluation"""
try:
if not isinstance(input_data, list):
return {"status": "Exception", "error": "Input must be a list"}
results = []
# Use a moderate number of workers for all language tests to ensure stability
# This prevents resource contention regardless of language
max_workers = max(1, min(multiprocessing.cpu_count() // 2, 4))
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
for future in concurrent.futures.as_completed(future_to_item):
item = future_to_item[future]
try:
result = future.result()
item.update(result)
results.append(item)
except Exception as e:
item.update({"status": "Exception", "error": str(e)})
results.append(item)
return results
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_single_case(input_data):
"""Evaluate a single code case"""
try:
if not isinstance(input_data, dict):
return {"status": "Exception", "error": "Input item must be a dictionary"}
language = input_data.get('language')
completions = input_data.get('processed_completions', [])
if not completions:
return {"status": "Exception", "error": "No code provided"}
# Use a retry mechanism for all languages for better reliability
max_retries = 2 # One retry for all languages
results = []
for comp in completions:
code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
# Try up to max_retries + 1 times for all test cases
for attempt in range(max_retries + 1):
result = evaluate_code(code, language)
# If success or last attempt, return/record the result
if result["status"] == "OK" or attempt == max_retries:
if result["status"] == "OK":
return result
results.append(result)
break
# For retries, briefly wait to allow resources to stabilize
time.sleep(0.3)
return results[0]
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_code(code, language):
"""Evaluate code in a specific language"""
try:
result = eval_string_script(language, code)
return result
except Exception as e:
return {"status": "Exception", "error": str(e)}
def synchronous_evaluate(input_data):
"""Synchronously evaluate code, compatible with original interface"""
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
queue_info = get_queue_status()
waiting_tasks = queue_info['waiting_tasks']
task_id = str(uuid.uuid4())
request_time = time.time()
task_status = {
'status': 'queued',
'queued_time': request_time,
'queue_position': queue_info['queue_size'] + 1,
'synchronous': True,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
# Add to queue
task = {
'id': task_id,
'input_data': input_data,
'request_time': request_time
}
redis_client.rpush(QUEUE_KEY, pickle.dumps(task))
while True:
status_data = redis_client.hget(STATUS_KEY, task_id)
if status_data:
status_info = pickle.loads(status_data)
if status_info['status'] == 'completed':
result = status_info.get('result', {"status": "Exception", "error": "No result found"})
redis_client.hdel(STATUS_KEY, task_id)
return result
elif status_info['status'] == 'error':
error = status_info.get('error', 'Unknown error')
redis_client.hdel(STATUS_KEY, task_id)
return {"status": "Exception", "error": error}
time.sleep(0.1)
def _get_estimated_time_for_task(language, complexity):
"""Get estimated processing time for a specific task type"""
key = f"{language}_{complexity}"
times_data = redis_client.hget(TASK_TIMES_KEY, key)
if times_data:
times = pickle.loads(times_data)
if times:
return np.median(times)
if complexity == 'simple':
return 1.0
elif complexity == 'medium':
return 3.0
else: # complex
return 8.0
def enqueue_task(input_data):
"""Add task to queue"""
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
task_id = str(uuid.uuid4())
request_time = time.time()
queue_info = get_queue_status()
task_status = {
'status': 'queued',
'queued_time': request_time,
'queue_position': queue_info['queue_size'] + 1,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
# Add to queue
task = {
'id': task_id,
'input_data': input_data,
'request_time': request_time
}
redis_client.rpush(QUEUE_KEY, pickle.dumps(task))
est_wait = queue_info['estimated_wait']
return {
'task_id': task_id,
'status': 'queued',
'queue_position': task_status['queue_position'],
'estimated_wait': est_wait,
'estimated_processing': estimated_total_time
}
def check_status(task_id):
"""Check task status"""
status_data = redis_client.hget(STATUS_KEY, task_id)
if not status_data:
return {'status': 'not_found'}
status_info = pickle.loads(status_data)
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
redis_client.hdel(STATUS_KEY, task_id)
return status_info
def get_queue_status():
"""Get queue status"""
# Get all task statuses
all_statuses = redis_client.hgetall(STATUS_KEY)
queued_tasks = []
processing_tasks = []
for task_id, status_data in all_statuses.items():
status_info = pickle.loads(status_data)
if status_info['status'] == 'queued':
queued_tasks.append(status_info)
elif status_info['status'] == 'processing':
processing_tasks.append(status_info)
queue_size = redis_client.llen(QUEUE_KEY)
active_tasks = len(processing_tasks)
waiting_tasks = len(queued_tasks)
remaining_processing_time = 0
for task in processing_tasks:
if 'start_time' in task and 'estimated_time' in task:
elapsed = time.time() - task['start_time']
remaining = max(0, task['estimated_time'] - elapsed)
remaining_processing_time += remaining
else:
remaining_processing_time += 2
if active_tasks > 0:
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
queued_processing_time = 0
for task in queued_tasks:
if 'estimated_time' in task:
queued_processing_time += task['estimated_time']
else:
queued_processing_time += 5
if worker_threads > 0 and queued_processing_time > 0:
queued_processing_time = queued_processing_time / worker_threads
estimated_wait = remaining_processing_time + queued_processing_time
# Get task history
history_data = redis_client.get(HISTORY_KEY)
if history_data:
task_history = pickle.loads(history_data)
else:
task_history = []
if task_history:
prediction_ratios = []
for task in task_history:
if 'factors' in task and 'estimated_time' in task:
prediction_ratios.append(task['process_time'] / task['estimated_time'])
if prediction_ratios:
correction_factor = np.median(prediction_ratios)
correction_factor = max(0.5, min(2.0, correction_factor))
estimated_wait *= correction_factor
estimated_wait = max(0.1, estimated_wait)
if waiting_tasks == 0 and active_tasks == 0:
estimated_wait = 0
recent_tasks = task_history[-5:] if task_history else []
return {
'queue_size': queue_size,
'active_tasks': active_tasks,
'waiting_tasks': waiting_tasks,
'worker_threads': worker_threads,
'estimated_wait': estimated_wait,
'recent_tasks': recent_tasks
}
def format_time(seconds):
"""Format time into readable format"""
if seconds < 60:
return f"{seconds:.1f} seconds"
elif seconds < 3600:
minutes = int(seconds / 60)
seconds = seconds % 60
return f"{minutes}m {seconds:.1f}s"
else:
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
return f"{hours}h {minutes}m"
def ui_get_queue_info():
"""Get queue info for UI"""
queue_info = get_queue_status()
tasks_html = ""
for task in reversed(queue_info['recent_tasks']):
tasks_html += f"""
<tr>
<td>{task['task_id'][:8]}...</td>
<td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
<td>{format_time(task['process_time'])}</td>
</tr>
"""
if not tasks_html:
tasks_html = """
<tr>
<td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
</tr>
"""
return f"""
<div class="dashboard">
<div class="queue-info-card main-card">
<h3 class="card-title">Queue Status Monitor</h3>
<div class="queue-stats">
<div class="stat-item">
<div class="stat-value">{queue_info['waiting_tasks']}</div>
<div class="stat-label">Waiting</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['active_tasks']}</div>
<div class="stat-label">Processing</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['worker_threads']}</div>
<div class="stat-label">Worker Threads</div>
</div>
</div>
<div class="wait-time">
<p><b>Current Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
<p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
</div>
</div>
<div class="queue-info-card history-card">
<h3 class="card-title">Recently Processed Tasks</h3>
<table class="recent-tasks">
<thead>
<tr>
<th>Task ID</th>
<th>Request Time</th>
<th>Processing Time</th>
</tr>
</thead>
<tbody>
{tasks_html}
</tbody>
</table>
</div>
</div>
"""
def launch_workers():
"""Launch worker threads"""
global running
running = True
# Start Redis queue monitor
monitor = threading.Thread(target=redis_queue_monitor)
monitor.daemon = True
monitor.start()
# Start worker threads
for _ in range(worker_threads):
worker = threading.Thread(target=queue_processor)
worker.daemon = True
worker.start()
# Custom CSS
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.dashboard {
display: flex;
flex-direction: column;
gap: 20px;
}
.card-title {
color: #333;
border-bottom: 2px solid #ddd;
padding-bottom: 10px;
margin-top: 0;
}
.status-card, .queue-info-card {
background: #fff;
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}
.main-card {
border-top: 5px solid #4285f4;
}
.history-card {
border-top: 5px solid #34a853;
}
.status-card.success {
background: #e7f5e7;
border-left: 5px solid #28a745;
}
.status-card.error {
background: #f8d7da;
border-left: 5px solid #dc3545;
}
.error-message {
color: #dc3545;
font-weight: bold;
padding: 10px;
background: #f8d7da;
border-radius: 5px;
}
.notice {
color: #0c5460;
background-color: #d1ecf1;
padding: 10px;
border-radius: 5px;
}
.queue-stats {
display: flex;
justify-content: space-around;
margin: 20px 0;
}
.stat-item {
text-align: center;
padding: 15px;
background: #f8f9fa;
border-radius: 10px;
min-width: 120px;
transition: transform 0.3s ease;
}
.stat-item:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.stat-value {
font-size: 32px;
font-weight: bold;
color: #4285f4;
margin-bottom: 5px;
}
.stat-label {
color: #5f6368;
font-size: 16px;
}
.wait-time {
text-align: center;
margin: 20px 0;
padding: 15px;
background: #f1f3f4;
border-radius: 8px;
font-size: 18px;
}
.last-update {
color: #80868b;
margin-top: 10px;
margin-bottom: 0;
}
.recent-tasks {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
background: white;
box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}
.recent-tasks th, .recent-tasks td {
border: 1px solid #e0e0e0;
padding: 12px 15px;
text-align: center;
}
.recent-tasks th {
background-color: #f1f3f4;
color: #202124;
font-weight: 500;
}
.recent-tasks tbody tr:hover {
background-color: #f8f9fa;
}
.tabs {
margin-top: 20px;
}
button.primary {
background-color: #4285f4;
color: white;
padding: 10px 20px;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
font-weight: 500;
transition: background-color 0.3s;
}
button.primary:hover {
background-color: #3367d6;
}
"""
# Initialize and launch worker threads
launch_workers()
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Code Evaluation Service")
gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
with gr.Row():
with gr.Column(scale=3):
# Queue status info card
queue_info_html = gr.HTML()
refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
# Hidden API interface components
with gr.Row(visible=False):
api_input = gr.JSON()
api_output = gr.JSON()
# Define update function
def update_queue_info():
return ui_get_queue_info()
# Update queue info periodically
demo.load(update_queue_info, None, queue_info_html, every=3)
# Refresh button event
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
# Add evaluation endpoint compatible with original interface
demo.queue()
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")
if __name__ == "__main__":
try:
demo.launch()
finally:
# Stop worker threads
running = False