File size: 25,109 Bytes
a27816a
 
 
30b1610
4f32597
a27816a
de3b744
fc6c268
de3b744
 
 
 
 
 
 
254fe03
 
de3b744
30b1610
8190051
 
 
 
 
 
 
 
254fe03
 
 
 
 
 
 
 
 
 
 
 
de3b744
 
 
 
 
 
254fe03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3b744
 
254fe03
de3b744
 
254fe03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3b744
 
 
 
 
 
 
254fe03
 
 
 
 
 
 
de3b744
 
 
 
254fe03
de3b744
254fe03
 
 
 
 
 
 
 
 
 
 
de3b744
254fe03
 
 
 
 
 
de3b744
254fe03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3b744
 
 
 
 
254fe03
 
 
 
 
 
 
 
 
 
 
de3b744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254fe03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3b744
 
254fe03
 
 
 
 
 
 
 
 
 
 
de3b744
 
 
 
 
 
 
254fe03
 
 
 
 
de3b744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254fe03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3b744
 
 
 
254fe03
de3b744
 
 
 
 
 
254fe03
 
 
 
 
 
 
 
de3b744
254fe03
de3b744
 
 
254fe03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3b744
254fe03
 
 
 
 
 
 
 
de3b744
254fe03
de3b744
254fe03
 
 
 
 
 
 
 
de3b744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254fe03
 
 
 
 
 
de3b744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8190051
 
 
edf1ecb
6df6e43
8190051
6df6e43
 
edf1ecb
8c0f360
 
6df6e43
8c0f360
6df6e43
a3558a8
6df6e43
d4652ff
 
 
 
6df6e43
a3558a8
de3b744
a3558a8
6df6e43
8c0f360
1bac4cd
6df6e43
a3558a8
edf1ecb
6df6e43
a3558a8
d4652ff
a3558a8
 
890be77
a3558a8
 
6df6e43
de3b744
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
import redis
import pickle
from src.containerized_eval import eval_string_script

# Add current directory and src directory to module search path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
    sys.path.append(current_dir)
if src_dir not in sys.path:
    sys.path.append(src_dir)

# Initialize Redis connection (will use environment variables in Hugging Face Space)
REDIS_URL = os.environ.get('REDIS_URL', 'redis://localhost:6379/0')
redis_client = redis.from_url(REDIS_URL)

# Keys for Redis
QUEUE_KEY = 'eval_task_queue'
STATUS_KEY = 'eval_task_status'
HISTORY_KEY = 'eval_task_history'
TASK_TIMES_KEY = 'eval_task_times'

# Local queue for worker threads
local_task_queue = queue.Queue()
# Lock for shared resources
lock = threading.Lock()
# Number of worker threads
worker_threads = max(1, multiprocessing.cpu_count() // 2)  # Using half the available cores for better stability
# Flag for running background threads
running = True

def redis_queue_monitor():
    """Monitor Redis queue and add tasks to local queue"""
    last_check = 0
    while running:
        try:
            # Check Redis queue every second
            if time.time() - last_check >= 1:
                last_check = time.time()
                # Get all tasks in the queue
                task_list = redis_client.lrange(QUEUE_KEY, 0, -1)
                for task_data in task_list:
                    task = pickle.loads(task_data)
                    task_id = task['id']
                    
                    # Check if task is already in processing
                    status_data = redis_client.hget(STATUS_KEY, task_id)
                    if status_data:
                        status = pickle.loads(status_data)
                        if status['status'] == 'queued':
                            # Add to local queue if not already processing
                            local_task_queue.put((task_id, task['input_data'], task['request_time']))
                            # Update status to processing
                            with lock:
                                status['status'] = 'processing'
                                status['start_time'] = time.time()
                                redis_client.hset(STATUS_KEY, task_id, pickle.dumps(status))
                            # Remove from Redis queue
                            redis_client.lrem(QUEUE_KEY, 1, task_data)
            
            time.sleep(0.1)
        except Exception as e:
            print(f"Redis queue monitor error: {e}")
            time.sleep(1)

def queue_processor():
    """Process tasks in the local queue"""
    while running:
        try:
            task_id, input_data, request_time = local_task_queue.get(timeout=0.1)
            
            # Get current status
            status_data = redis_client.hget(STATUS_KEY, task_id)
            if status_data:
                task_status = pickle.loads(status_data)
            else:
                task_status = {
                    'status': 'processing',
                    'queued_time': request_time,
                    'start_time': time.time()
                }
            
            # Update status
            task_status['status'] = 'processing'
            task_status['start_time'] = time.time()
            redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
            
            if isinstance(input_data, list) and len(input_data) > 0:
                sample_task = input_data[0]
                language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
                task_size = len(input_data)
                task_complexity = _estimate_task_complexity(input_data)
                
                estimated_factors = {
                    'language': language,
                    'size': task_size,
                    'complexity': task_complexity
                }
                task_status['estimated_factors'] = estimated_factors
                redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
            
            result = evaluate(input_data)
            
            end_time = time.time()
            process_time = end_time - task_status['start_time']
            
            # Update status
            task_status['status'] = 'completed'
            task_status['result'] = result
            task_status['end_time'] = end_time
            task_status['process_time'] = process_time
            redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
            
            # Update task type times
            if 'estimated_factors' in task_status:
                factors = task_status['estimated_factors']
                key = f"{factors['language']}_{factors['complexity']}"
                
                # Update task times in Redis
                times_data = redis_client.hget(TASK_TIMES_KEY, key)
                if times_data:
                    times = pickle.loads(times_data)
                else:
                    times = []
                
                times.append(process_time / factors['size'])
                if len(times) > 10:
                    times = times[-10:]
                
                redis_client.hset(TASK_TIMES_KEY, key, pickle.dumps(times))
            
            # Add to history
            history_item = {
                'task_id': task_id,
                'request_time': request_time,
                'process_time': process_time,
                'status': 'completed',
                'factors': task_status.get('estimated_factors', {})
            }
            
            # Get current history
            history_data = redis_client.get(HISTORY_KEY)
            if history_data:
                history = pickle.loads(history_data)
            else:
                history = []
            
            history.append(history_item)
            while len(history) > 200:
                history.pop(0)
            
            redis_client.set(HISTORY_KEY, pickle.dumps(history))
            
            local_task_queue.task_done()
            
        except queue.Empty:
            continue
        except Exception as e:
            if 'task_id' in locals():
                status_data = redis_client.hget(STATUS_KEY, task_id)
                if status_data:
                    task_status = pickle.loads(status_data)
                else:
                    task_status = {}
                
                task_status['status'] = 'error'
                task_status['error'] = str(e)
                task_status['end_time'] = time.time()
                redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
            local_task_queue.task_done()

def _estimate_task_complexity(tasks):
    """Estimate task complexity
    
    Returns: 'simple', 'medium', or 'complex'
    """
    total_code_length = 0
    count = 0
    
    for task in tasks:
        if isinstance(task, dict):
            prompt = task.get('prompt', '')
            tests = task.get('tests', '')
            completions = task.get('processed_completions', [])
            
            code_length = len(prompt) + len(tests)
            if completions:
                code_length += sum(len(comp) for comp in completions)
            
            total_code_length += code_length
            count += 1
    
    if count == 0:
        return 'medium'
    
    avg_length = total_code_length / count
    
    if avg_length < 1000:
        return 'simple'
    elif avg_length < 5000:
        return 'medium'
    else:
        return 'complex'

def evaluate(input_data):
    """Main function for code evaluation"""
    try:
        if not isinstance(input_data, list):
            return {"status": "Exception", "error": "Input must be a list"}
            
        results = []
        
        # Use a moderate number of workers for all language tests to ensure stability
        # This prevents resource contention regardless of language
        max_workers = max(1, min(multiprocessing.cpu_count() // 2, 4))
        
        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
            for future in concurrent.futures.as_completed(future_to_item):
                item = future_to_item[future]
                try:
                    result = future.result()
                    item.update(result)
                    results.append(item)
                except Exception as e:
                    item.update({"status": "Exception", "error": str(e)})
                    results.append(item)
        return results
            
    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def evaluate_single_case(input_data):
    """Evaluate a single code case"""
    try:
        if not isinstance(input_data, dict):
            return {"status": "Exception", "error": "Input item must be a dictionary"}
            
        language = input_data.get('language')
        completions = input_data.get('processed_completions', [])

        if not completions:
            return {"status": "Exception", "error": "No code provided"}

        # Use a retry mechanism for all languages for better reliability
        max_retries = 2  # One retry for all languages
        
        results = []
        for comp in completions:
            code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
            
            # Try up to max_retries + 1 times for all test cases
            for attempt in range(max_retries + 1):
                result = evaluate_code(code, language)
                
                # If success or last attempt, return/record the result
                if result["status"] == "OK" or attempt == max_retries:
                    if result["status"] == "OK":
                        return result
                    results.append(result)
                    break
                    
                # For retries, briefly wait to allow resources to stabilize
                time.sleep(0.3)
            
        return results[0]
                
    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def evaluate_code(code, language):
    """Evaluate code in a specific language"""
    try:
        result = eval_string_script(language, code)
        return result

    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def synchronous_evaluate(input_data):
    """Synchronously evaluate code, compatible with original interface"""
    if isinstance(input_data, list) and len(input_data) > 0:
        sample_task = input_data[0]
        language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
        task_size = len(input_data)
        task_complexity = _estimate_task_complexity(input_data)
    else:
        language = 'unknown'
        task_size = 1
        task_complexity = 'medium'
    
    estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
    estimated_total_time = estimated_time_per_task * task_size
    
    queue_info = get_queue_status()
    waiting_tasks = queue_info['waiting_tasks']
    
    task_id = str(uuid.uuid4())
    request_time = time.time()
    
    task_status = {
        'status': 'queued',
        'queued_time': request_time,
        'queue_position': queue_info['queue_size'] + 1,
        'synchronous': True,
        'estimated_factors': {
            'language': language,
            'size': task_size,
            'complexity': task_complexity
        },
        'estimated_time': estimated_total_time
    }
    
    redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
    
    # Add to queue
    task = {
        'id': task_id,
        'input_data': input_data,
        'request_time': request_time
    }
    redis_client.rpush(QUEUE_KEY, pickle.dumps(task))
    
    while True:
        status_data = redis_client.hget(STATUS_KEY, task_id)
        if status_data:
            status_info = pickle.loads(status_data)
            if status_info['status'] == 'completed':
                result = status_info.get('result', {"status": "Exception", "error": "No result found"})
                redis_client.hdel(STATUS_KEY, task_id)
                return result
            elif status_info['status'] == 'error':
                error = status_info.get('error', 'Unknown error')
                redis_client.hdel(STATUS_KEY, task_id)
                return {"status": "Exception", "error": error}
        
        time.sleep(0.1)

def _get_estimated_time_for_task(language, complexity):
    """Get estimated processing time for a specific task type"""
    key = f"{language}_{complexity}"
    
    times_data = redis_client.hget(TASK_TIMES_KEY, key)
    if times_data:
        times = pickle.loads(times_data)
        if times:
            return np.median(times)
    
    if complexity == 'simple':
        return 1.0
    elif complexity == 'medium':
        return 3.0
    else:  # complex
        return 8.0

def enqueue_task(input_data):
    """Add task to queue"""
    if isinstance(input_data, list) and len(input_data) > 0:
        sample_task = input_data[0]
        language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
        task_size = len(input_data)
        task_complexity = _estimate_task_complexity(input_data)
    else:
        language = 'unknown'
        task_size = 1
        task_complexity = 'medium'
    
    estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
    estimated_total_time = estimated_time_per_task * task_size
    
    task_id = str(uuid.uuid4())
    request_time = time.time()
    
    queue_info = get_queue_status()
    
    task_status = {
        'status': 'queued',
        'queued_time': request_time,
        'queue_position': queue_info['queue_size'] + 1,
        'estimated_factors': {
            'language': language,
            'size': task_size,
            'complexity': task_complexity
        },
        'estimated_time': estimated_total_time
    }
    
    redis_client.hset(STATUS_KEY, task_id, pickle.dumps(task_status))
    
    # Add to queue
    task = {
        'id': task_id,
        'input_data': input_data,
        'request_time': request_time
    }
    redis_client.rpush(QUEUE_KEY, pickle.dumps(task))
    
    est_wait = queue_info['estimated_wait']
    
    return {
        'task_id': task_id,
        'status': 'queued',
        'queue_position': task_status['queue_position'],
        'estimated_wait': est_wait,
        'estimated_processing': estimated_total_time
    }

def check_status(task_id):
    """Check task status"""
    status_data = redis_client.hget(STATUS_KEY, task_id)
    if not status_data:
        return {'status': 'not_found'}
    
    status_info = pickle.loads(status_data)
    
    if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
        redis_client.hdel(STATUS_KEY, task_id)
        
    return status_info

def get_queue_status():
    """Get queue status"""
    # Get all task statuses
    all_statuses = redis_client.hgetall(STATUS_KEY)
    
    queued_tasks = []
    processing_tasks = []
    
    for task_id, status_data in all_statuses.items():
        status_info = pickle.loads(status_data)
        if status_info['status'] == 'queued':
            queued_tasks.append(status_info)
        elif status_info['status'] == 'processing':
            processing_tasks.append(status_info)
    
    queue_size = redis_client.llen(QUEUE_KEY)
    active_tasks = len(processing_tasks)
    waiting_tasks = len(queued_tasks)
    
    remaining_processing_time = 0
    for task in processing_tasks:
        if 'start_time' in task and 'estimated_time' in task:
            elapsed = time.time() - task['start_time']
            remaining = max(0, task['estimated_time'] - elapsed)
            remaining_processing_time += remaining
        else:
            remaining_processing_time += 2
    
    if active_tasks > 0:
        remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
    
    queued_processing_time = 0
    for task in queued_tasks:
        if 'estimated_time' in task:
            queued_processing_time += task['estimated_time']
        else:
            queued_processing_time += 5
    
    if worker_threads > 0 and queued_processing_time > 0:
        queued_processing_time = queued_processing_time / worker_threads
    
    estimated_wait = remaining_processing_time + queued_processing_time
    
    # Get task history
    history_data = redis_client.get(HISTORY_KEY)
    if history_data:
        task_history = pickle.loads(history_data)
    else:
        task_history = []
    
    if task_history:
        prediction_ratios = []
        for task in task_history:
            if 'factors' in task and 'estimated_time' in task:
                prediction_ratios.append(task['process_time'] / task['estimated_time'])
        
        if prediction_ratios:
            correction_factor = np.median(prediction_ratios)
            correction_factor = max(0.5, min(2.0, correction_factor))
            estimated_wait *= correction_factor
    
    estimated_wait = max(0.1, estimated_wait)
    if waiting_tasks == 0 and active_tasks == 0:
        estimated_wait = 0
        
    recent_tasks = task_history[-5:] if task_history else []
        
    return {
        'queue_size': queue_size,
        'active_tasks': active_tasks,
        'waiting_tasks': waiting_tasks,
        'worker_threads': worker_threads,
        'estimated_wait': estimated_wait,
        'recent_tasks': recent_tasks
    }

def format_time(seconds):
    """Format time into readable format"""
    if seconds < 60:
        return f"{seconds:.1f} seconds"
    elif seconds < 3600:
        minutes = int(seconds / 60)
        seconds = seconds % 60
        return f"{minutes}m {seconds:.1f}s"
    else:
        hours = int(seconds / 3600)
        minutes = int((seconds % 3600) / 60)
        return f"{hours}h {minutes}m"

def ui_get_queue_info():
    """Get queue info for UI"""
    queue_info = get_queue_status()
    
    tasks_html = ""
    for task in reversed(queue_info['recent_tasks']):
        tasks_html += f"""
        <tr>
            <td>{task['task_id'][:8]}...</td>
            <td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
            <td>{format_time(task['process_time'])}</td>
        </tr>
        """
    
    if not tasks_html:
        tasks_html = """
        <tr>
            <td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
        </tr>
        """
    
    return f"""
    <div class="dashboard">
        <div class="queue-info-card main-card">
            <h3 class="card-title">Queue Status Monitor</h3>
            <div class="queue-stats">
                <div class="stat-item">
                    <div class="stat-value">{queue_info['waiting_tasks']}</div>
                    <div class="stat-label">Waiting</div>
                </div>
                <div class="stat-item">
                    <div class="stat-value">{queue_info['active_tasks']}</div>
                    <div class="stat-label">Processing</div>
                </div>
                <div class="stat-item">
                    <div class="stat-value">{queue_info['worker_threads']}</div>
                    <div class="stat-label">Worker Threads</div>
                </div>
            </div>
            
            <div class="wait-time">
                <p><b>Current Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
                <p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
            </div>
        </div>
            
        <div class="queue-info-card history-card">
            <h3 class="card-title">Recently Processed Tasks</h3>
            <table class="recent-tasks">
                <thead>
                    <tr>
                        <th>Task ID</th>
                        <th>Request Time</th>
                        <th>Processing Time</th>
                    </tr>
                </thead>
                <tbody>
                    {tasks_html}
                </tbody>
            </table>
        </div>
    </div>
    """

def launch_workers():
    """Launch worker threads"""
    global running
    running = True
    
    # Start Redis queue monitor
    monitor = threading.Thread(target=redis_queue_monitor)
    monitor.daemon = True
    monitor.start()
    
    # Start worker threads
    for _ in range(worker_threads):
        worker = threading.Thread(target=queue_processor)
        worker.daemon = True
        worker.start()

# Custom CSS
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

.dashboard {
    display: flex;
    flex-direction: column;
    gap: 20px;
}

.card-title {
    color: #333;
    border-bottom: 2px solid #ddd;
    padding-bottom: 10px;
    margin-top: 0;
}

.status-card, .queue-info-card {
    background: #fff;
    border-radius: 12px;
    padding: 20px;
    margin: 10px 0;
    box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}

.main-card {
    border-top: 5px solid #4285f4;
}

.history-card {
    border-top: 5px solid #34a853;
}

.status-card.success {
    background: #e7f5e7;
    border-left: 5px solid #28a745;
}

.status-card.error {
    background: #f8d7da;
    border-left: 5px solid #dc3545;
}

.error-message {
    color: #dc3545;
    font-weight: bold;
    padding: 10px;
    background: #f8d7da;
    border-radius: 5px;
}

.notice {
    color: #0c5460;
    background-color: #d1ecf1;
    padding: 10px;
    border-radius: 5px;
}

.queue-stats {
    display: flex;
    justify-content: space-around;
    margin: 20px 0;
}

.stat-item {
    text-align: center;
    padding: 15px;
    background: #f8f9fa;
    border-radius: 10px;
    min-width: 120px;
    transition: transform 0.3s ease;
}

.stat-item:hover {
    transform: translateY(-5px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}

.stat-value {
    font-size: 32px;
    font-weight: bold;
    color: #4285f4;
    margin-bottom: 5px;
}

.stat-label {
    color: #5f6368;
    font-size: 16px;
}

.wait-time {
    text-align: center;
    margin: 20px 0;
    padding: 15px;
    background: #f1f3f4;
    border-radius: 8px;
    font-size: 18px;
}

.last-update {
    color: #80868b;
    margin-top: 10px;
    margin-bottom: 0;
}

.recent-tasks {
    width: 100%;
    border-collapse: collapse;
    margin-top: 15px;
    background: white;
    box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}

.recent-tasks th, .recent-tasks td {
    border: 1px solid #e0e0e0;
    padding: 12px 15px;
    text-align: center;
}

.recent-tasks th {
    background-color: #f1f3f4;
    color: #202124;
    font-weight: 500;
}

.recent-tasks tbody tr:hover {
    background-color: #f8f9fa;
}

.tabs {
    margin-top: 20px;
}

button.primary {
    background-color: #4285f4;
    color: white;
    padding: 10px 20px;
    border: none;
    border-radius: 4px;
    cursor: pointer;
    font-size: 16px;
    font-weight: 500;
    transition: background-color 0.3s;
}

button.primary:hover {
    background-color: #3367d6;
}
"""

# Initialize and launch worker threads
launch_workers()

# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("# Code Evaluation Service")
    gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
    
    with gr.Row():
        with gr.Column(scale=3):
            # Queue status info card
            queue_info_html = gr.HTML()
            refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
    
    # Hidden API interface components
    with gr.Row(visible=False):
        api_input = gr.JSON()
        api_output = gr.JSON()
    
    # Define update function
    def update_queue_info():
        return ui_get_queue_info()
    
    # Update queue info periodically
    demo.load(update_queue_info, None, queue_info_html, every=3)
    
    # Refresh button event
    refresh_queue_btn.click(update_queue_info, None, queue_info_html)
    
    # Add evaluation endpoint compatible with original interface
    demo.queue()
    evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")

if __name__ == "__main__":
    try:
        demo.launch()
    finally:
        # Stop worker threads
        running = False